首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is devoted to proving some features of the non associated flow rule such as a softening phenomenon in the stress–strain curve and the decrease of limit load. Based on the non-associated Drucker–Prager model, the analysis is investigated by means of a soil specimen subjected to traction and compression actions on its edges. To obtain the stress–strain curve, a semi-analytical approach provides an incremental relation between stresses and strains. The plastic limit load is calculated analytically by direct static and kinematic methods. The kinematic one is determined on the basis of the bipotential concept.  相似文献   

2.
3.
The paper is devoted to a numerical Limit Analysis of a hollow spheroidal model with a Drucker–Prager solid matrix, for several values of the corresponding friction angle ?. In the first part of this study, the static and the mixed kinematic 3D-codes recently evaluated in [1] are modified to use the geometry defined in [2] for spheroidal cavities in the context of a von Mises matrix. The results in terms of macroscopic criteria are satisfactory for low and medium values of ?  , but not enough for ?=30°?=30° in the highly compressive part of the criterion. To improve these results, an original mixed approach, dedicated to the axisymmetric case, was elaborated with a specific discontinuous quadratic velocity field associated with the triangular finite element. Despite the less good conditioning inherent to the axisymmetric modelization, the resulting conic programming problem appears quite efficient, allowing one take into account numerical discretization refinements unreachable with the corresponding 3D mixed code. After a first validation in the case of spherical cavities whose exact solution is known, the final results for spheroidal voids are given for three usual values of the friction angle and two values of the cavity aspect factor.  相似文献   

4.
Up to now, some explicit approximate integration schemes based on exponential maps, for non-hardening material obeying Drucker–Prager’s criterion, have been presented. Two new exponential-based approximate formulations, for associative Drucker–Prager plasticity are developed in this article. Both are consistent and explicit algorithms. The linear isotropic and Prager’s kinematic hardening behavior are assumed. Furthermore, an accurate solution for the constitutive equations is derived. The accuracies of the suggested approximate algorithms are assessed by creating related iso-error maps. In addition, by using piecewise strain load histories, and calculating computation times, the robustness and efficiency of the formulations are demonstrated.  相似文献   

5.
In the present work, the propagation of longitudinal stress waves is investigated with a strain gradient elasticity theory given by Lam et al. In principle, the analysis of wave motion is based on the Love rod model including the lateral deformation effects, but in the same time is also taken into account the shear strain effects with Bishop?s correction. By applying Hamilton?s principle, a general explicit strain gradient elasticity solution is developed for the longitudinal stress waves, and it is compared with the special solutions based on the modified couple stress and classical theories. This work gives useful information with regard to the meaning of the three scale parameters in the strain gradient elasticity theory used here.  相似文献   

6.
In this paper, we first describe a homogenization methodology with the aim of establishing strain gradient constitutive relations for heterogeneous materials. The methodology presented in this work includes two main steps. The first one is the construction of the average strain-energy density for a well-chosen RVE by using a homogenization technique. The second one is the transformation of the obtained average strain-energy density to that for the continuum. An important characteristic of this method is its self-consistency with respect to the choice of the RVE: the strain gradient constitutive law built by using the present method is independent of the size and the form of the RVE. In the frame of this homogenization procedure, we have constructed a strain gradient constitutive relation for a two-dimensional elastic material with many microcracks by adopting the self-consistent scheme. It was shown that the effective behavior of cracked solids depends not only on the crack density but also on the average crack size with which the strain gradient is associated. The proposed constitutive relation provides a starting point for the development of an evolution law of damage including strain gradient effect, which will be presented in the second part of this work.  相似文献   

7.
In this paper, we established a strain-gradient damage model based on microcrack analysis for brittle materials. In order to construct a damage-evolution law including the strain-gradient effect, we proposed a resistance curve for microcrack growth before damage localization. By introducing this resistance curve into the strain-gradient constitutive law established in the first part of this work (Li, 2011), we obtained an energy potential that is capable to describe the evolution of damage during the loading. This damage model was furthermore implemented into a finite element code. By using this numerical tool, we carried out detailed numerical simulations on different specimens in order to assess the fracture process in brittle materials. The numerical results were compared with previous experimental results. From these studies, we can conclude that the strain gradient plays an important role in predicting fractures due to singular or non-singular stress concentrations and in assessing the size effect observed in experimental studies. Moreover, the self-regularization characteristic of the present damage model makes the numerical simulations insensitive to finite-element meshing. We believe that it can be utilized in fracture predictions for brittle or quasi-brittle materials in engineering applications.  相似文献   

8.
A simple method is established to determine the microscale uniaxial stress–strain curve from the load and deflection data for a doubly clamped beam. The method is based on the fact that, for beam deflection much larger than the beam thickness, the axial stretching dominates the deformation in the doubly clamped beam and the doubly clamped beam behaves like a simple plastic hinge. The microscale uniaxial stress–strain curve, together with the cantilever beam experiments, is used to determine the strain gradient effect in Au thin beams. The effect of finite rotation is also discussed.  相似文献   

9.
A size-dependent Reddy–Levinson beam model is developed based on a strain gradient elasticity theory. Governing equations and boundary conditions are derived by using Hamilton’s principle. The model contains three material length scale parameters, which may effectively capture the size effect in micron or sub-micron. This model can degenerate into the modified couple stress model or even the classical model if two or all material length scale parameters are taken to be zero respectively. In addition, the present model recovers the micro scale Timoshenko and Bernoulli–Euler beam models based on the same strain gradient elasticity theory. To illustrate the new model, the static bending and free vibration problems of a simply supported micro scale Reddy–Levinson beam are solved respectively; the results are compared with the reduced models. Numerical results reveal that the differences in the deflection, rotation and natural frequency predicted by the present model and the other two reduced Reddy–Levinson models are getting larger as the beam thickness is comparable to the material length scale parameters. These differences, however, are decreasing or even diminishing with the increase of the beam thickness. This study may be helpful to characterize the mechanical properties of small scale beam-like structures for a wide range of potential applications.  相似文献   

10.
A virtual Taylor impact of cellular materials is analyzed with a wave propagation technique, i.e. the Lagrangian analysis method, of which the main advantage is that no pre-assumed constitutive relationship is required. Time histories of particle velocity, local strain, and stress profiles are calculated to present the local stress–strain history curves, from which the dynamic stress–strain states are obtained.The present results reveal that the dynamic-rigid-plastic hardening(D-R-PH) material model introduced in a previous study of our group is in good agreement with the dynamic stress–strain states under high loading rates obtained by the Lagrangian analysis method. It directly reflects the effectiveness and feasibility of the D-R-PH material model for the cellular materials under high loading rates.  相似文献   

11.
Constitutive equations are derived for the elastic response of swollen elastomers and hydrogels under an arbitrary deformation with finite strains. An expression is developed for the free energy density of a polymer network based on the Flory concept of flexible chains with constrained junctions and solvent-dependent reference configuration. The importance of introduction of a reference configuration evolving under swelling is confirmed by the analysis of experimental data on nanocomposite hydrogels subjected to swelling and drying. Adjustable parameters in the stress–strain relations are found by fitting observations on swollen elastomers, chemical gels (linked by covalent bonds and sliding cross-links), and physical gels under uniaxial stretching, equi-biaxial tension, and pure shear. Good agreement is demonstrated between the observations and results of numerical simulation. A pronounced difference is revealed between the effect of solvent content on elastic moduli of chemical and physical gels.  相似文献   

12.
A temperature-dependent viscodamage model is proposed and coupled to the temperature-dependent Schapery’s nonlinear viscoelasticity and the temperature-dependent Perzyna’s viscoplasticity constitutive model presented in Abu Al-Rub et al., 2009, Huang et al., in press in order to model the nonlinear constitutive behavior of asphalt mixes. The thermo-viscodamage model is formulated to be a function of temperature, total effective strain, and the damage driving force which is expressed in terms of the stress invariants of the effective stress in the undamaged configuration. This expression for the damage force allows for the distinction between the influence of compression and extension loading conditions on damage nucleation and growth. A systematic procedure for obtaining the thermo-viscodamage model parameters using creep test data at different stress levels and different temperatures is presented. The recursive-iterative and radial return algorithms are used for the numerical implementation of the nonlinear viscoelasticity and viscoplasticity models, respectively, whereas the viscodamage model is implemented using the effective (undamaged) configuration concept. Numerical algorithms are implemented in the well-known finite element code Abaqus via the user material subroutine UMAT. The model is then calibrated and verified by comparing the model predictions with experimental data that include creep-recovery, creep, and uniaxial constant strain rate tests over a range of temperatures, stress levels, and strain rates. It is shown that the presented constitutive model is capable of predicting the nonlinear behavior of asphaltic mixes under different loading conditions.  相似文献   

13.
Paper and paperboard generally exhibit anisotropic and non-linear mechanical material behaviour. In this work, the development of an orthotropic elastic–plastic constitutive model, suitable for modelling of the material behaviour of paper is presented. The anisotropic material behaviour is introduced into the model by orthotropic elasticity and an isotropic plasticity equivalent transformation tensor. A parabolic stress–strain relation is adopted to describe the hardening of the material. The experimental and numerical procedures for evaluation of the required material parameters for the model are described. Uniaxial tensile testing in three different inplane material directions provides the calibration of the material parameters under plane stress conditions. The numerical implementation of the material model is presented and the model is shown to perform well in agreement with experimentally observed mechanical behaviour of paper.  相似文献   

14.
A slight rearrangement of the classical Cox and Merz rule suggests that the shear stress value of steady shear flow, , and complex modulus value of small amplitude oscillatory shear, G ∗ (ω) = (G′2 + G″2)1/2, are equivalent in many respects. Small changes of material structure, which express themselves most sensitively in the steady shear stress, τ, show equally pronounced in linear viscoelastic data when plotting these with G ∗  as one of the variables. An example is given to demonstrate this phenomenon: viscosity data that cover about three decades in frequency get stretched out over about nine decades in G ∗  while maintaining steep gradients in a transition region. This suggests a more effective way of exploiting the Cox–Merz rule when it is valid and exploring reasons for lack of validity when it is not. The τ −G ∗  equivalence could also further the understanding of the steady shear normal stress function as proposed by Laun.  相似文献   

15.
16.
17.
18.
19.
This study presents a derivation of the Goodman–Cowin (GC) equation using the microcontinuum field theory. Through the decomposition of various microcontinuum field quantities into the straining, dilatant, and rotational parts, a microcontinuum can be classified into seven subclasses. One of the subclasses, called a microdilatation continuum, is introduced when only the dilatant motion in a macroelement is taken into account. The balance equation of equilibrated force in the GC theory can be derived while introducing the equilibrated intrinsic body force in the energy balance equation of the microdilatation continuum. The internal length of granular materials, appearing in the modified GC equation, is interpreted as the gyration radius of a macroelement. This study also obtains the evolution equation of the internal length from the microcontinuum point of view.   相似文献   

20.
In this study, an inverse method based on the Levenberg–Marquardt algorithm was evaluated in a numerical experiment to determine the large strain viscoelastic properties from the bubble inflation test. The properties were determined by iteratively matching the calculated bubble pressure–piston displacement data from finite element simulations to a single set of bubble pressure–piston displacement data. The strain-dependent behaviour was characterised by a two-parameter Mooney–Rivlin hyperelastic model, while the time-dependent behaviour was characterised by a three-parameter power law equation. Different initial guesses were used to evaluate the inverse method, and transformation functions were applied to constrain the intermediate guesses to be within bounds. It was found that estimates of the viscoelastic properties could be obtained reasonably using only one set of bubble pressure–piston displacement data. Estimates of the properties were likely affected by the limited time duration of the test, as the behaviour at shorter and particularly larger time scales was less accurately predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号