首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Fluid Phase Equilibria》2006,242(2):169-175
Vapor–liquid equilibrium (VLE) data for the ternary system of carbon dioxide, ethanol and ethyl acetate were measured in this study at 303.2, 308.2, and 313.2 K, and at pressures from 4 to 7 MPa. A static type phase equilibrium apparatus with visual sapphire windows was used in the experimental measurements. New VLE data for CO2 in the mixed solvent were presented. These ternary VLE data at elevated pressures were also correlated using either the modified Soave–Redlich–Kwong or Peng–Robinson equation of state, with either the van der Waals one-fluid or Huron–Vidal mixing model. Satisfactory correlation results are reported with temperature-independent binary parameters. It is observed that at 313.2 K and 7 MPa, ethanol can be separated from ethyl acetate into the vapor phase at all concentrations in the presence of high pressure CO2.  相似文献   

2.
Experimental phase equilibrium values (cloud points) for the ternary system involving carbon dioxide, l-lactide and ethanol have been measured in order to provide fundamental values to conduct the polymerization reaction in supercritical carbon dioxide medium. The experiments were performed using a variable-volume view cell over the temperature range from 323 K to 353 K, system pressure between 9 MPa and 25.0 MPa and different mole ratios of ethanol to l-lactide (0.5:1, 1:1 and 1.5:1). Phase transitions of vapour-liquid types were observed. The experimental results were modelled using the Peng–Robinson (PR) equation of state with the Wong–Sandler (PR–WS) mixing rule, providing a good representation of the experimental phase equilibrium values.  相似文献   

3.
The compound oryzanol available in the rice bran (oriza sativa) is well known for its antioxidant activity. Phase equilibrium data involving oryzanol in compressed fluids, hardly found in the literature, are important to provide the basis for the extraction and fractionation processes. In this sense, the aim of this work is to report phase equilibrium measurements for the system (γ-oryzanol + chloroform) in compressed propane. Phase equilibrium experiments were performed using the static synthetic method (cloud points transition data) in a high-pressure variable-volume view cell in the temperature range of 303 K to 353 K, pressures up to 17 MPa, for oryzanol overall mass fractions of 2 wt%, 5 wt% and 10 wt% in (propane + chloroform) mixtures. A complex phase behaviour comprising vapour–liquid, liquid–liquid, vapour–liquid–liquid, solid–liquid, solid–liquid–liquid, solid–liquid–liquid–vapour transitions were visually observed for the system studied.  相似文献   

4.
Experimental isobaric (vapor + liquid + liquid) and (vapor + liquid) equilibrium data for the ternary system {water (1) + cyclohexane (2) + heptane (3)} and the quaternary system {water (1) + ethanol (2) + cyclohexane (3) + heptane (4)} were measured at 101.3 kPa. An all-glass, dynamic recirculating still equipped with an ultrasonic homogenizer was used to determine the VLLE. The results obtained show that the system does not present quaternary azeotropes. The point-by-point method by Wisniak for testing the thermodynamic consistency of isobaric measurements was used to test the equilibrium data.  相似文献   

5.
In the present work, the three- and four-phase hydrate equilibria of (carbon dioxide (CO2) + tetrahydrofuran (THF) + water) system are measured by using Cailletet equipment in the temperature and pressure range of (272 to 292) K and (1.0 to 7.5) MPa, respectively, at different CO2 concentration. Throughout the study, the concentration of THF is kept constant at 5 mol% in the aqueous solution. In addition, the fluid phase transitions of LW–LV–V  LW–LV (bubble point) and LW–LV–V  LW–V (dew point) are determined when they are present in the ternary system. For comparison, the three-phase hydrate equilibria of binary (CO2 + H2O) are also measured. Experimental measurements show that the addition of THF as a hydrate promoter extends hydrate stability region by elevating the hydrate equilibrium temperature at a specified pressure. The three-phase equilibrium line H–LW–V is found to be independent of the overall concentration of CO2. Contradictory, at higher pressure, the phase equilibria of the systems are significantly influenced by the overall concentration of CO2 in the systems. A liquid–liquid phase split is observed at overall concentration of CO2 as low as 3 mol% at elevated pressure. The region is bounded by the bubble-points line (LW–LV–V  LW–LV), dew points line (LW–LV–V  LW + V) and the four-phase equilibrium line (H + LW + LV + V). At higher overall concentration of CO2 in the ternary system, experimental measurements show that pseudo-retrograde behaviour exists at pressure between (2.5 and 5) MPa at temperature of 290.8 K.  相似文献   

6.
Phase equilibria of carbon dioxide + poly ethylene glycol (PEG) of average mol weight 6000 g/mol + water mixtures has been measured by the static method at conditions of interest for the development of Particles from Gas Saturated Solutions (PGSS)-drying processes (pressure from 10 MPa to 30 MPa, temperature from 353 K to 393 K). A thermodynamic model based on the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) equation of state has been developed for correlating experimental data. The model is able to predict the composition of the liquid phase with an average deviation of 8.0%. However, the model does not calculate correctly the concentration of PEG in the gas phase. The model is also capable of predicting VLE data reported in the literature of PEG + CO2 mixtures with PEGs of molecular weights ranging from 1500 g/mol to 18500 g/mol as well as solid–fluid equilibrium of carbon dioxide + PEG mixtures at pressures below 10 MPa.  相似文献   

7.
Binary (vapour + liquid) equilibrium data were measured for the {carbon dioxide + pentafluoroethane (HFC-125)} system at temperatures from 313.15 K to 333.15 K and the {carbon dioxide + dodecafluoro-2-methylpentan-3-one (NOVEC™1230)} system at temperatures from 313.15 K to 343.15 K. These experiments were carried out with a circulating-type apparatus with on-line gas chromatography. The experimental data were correlated well by the Peng–Robinson equation of state using the Wong–Sandler mixing rules.  相似文献   

8.
The four-phase equilibrium conditions of (vapor + liquid + hydrate + ice) were measured in the system of (CO2 + 2,2-dimethylbutane + water). The measurements were performed within the temperature range (254.2 to 270.2) K and pressure range (0.490 to 0.847) MPa using an isochoric method. Phase equilibrium conditions of hydrate formed in this study were measured to be at higher temperatures and lower pressures than those of structure I CO2 simple hydrate. The largest difference in the equilibrium pressures of structure I CO2 hydrate and the hydrate formed in the present study was 0.057 MPa at T = 258.3 K. On the basis of the four-phase equilibrium data obtained, the quintuple point for the (ice + structure I hydrate + structure H hydrate + liquid + vapor) was also determined to be T = 266.4 K and 0.864 MPa. The results indicate that structure H hydrate formed with CO2 and 2,2-dimethylbutane is stable exclusively at the temperatures below the quintuple temperature.  相似文献   

9.
(Liquid + liquid) equilibrium (LLE) results for the ternary mixtures of (methanol or ethanol + toluene or m-xylene + n-dodecane) at three temperatures (298.15, 303.15 and 313.15) K are reported. The compositions of liquid phases at equilibrium were determined by g.l.c. measurements and the results were correlated with the UNIQUAC and NRTL activity coefficient models. The partition coefficients and the selectivity factor of methanol and ethanol are calculated and compared to suggest which alcohol is more suitable for extracting the aromatic hydrocarbons (toluene or m-xylene) from n-dodecane. The phase diagrams for the ternary mixtures including both the experimental and correlated tie lines are presented. From the phase diagrams and the selectivity factors it is concluded that methanol has a higher efficiency as a solvent in extraction of aromatic hydrocarbon from alkane mixtures.  相似文献   

10.
Reported in this work are phase equilibrium data at high pressures for the binary and ternary systems formed by {propane + N,N-dimethylformamide (DMF) + methanol}. Phase equilibrium measurements were performed in a high-pressure, variable-volume view cell, following the static synthetic method for obtaining the experimental bubble and dew points transition data over the temperature range of (363 to 393) K, pressures up to 11.5 MPa and overall mole fraction of the lighter component varying from 0.1 to 0.995. For the systems investigated, vapour–liquid (VLE), liquid–liquid (LLE) and vapour–liquid–liquid (VLLE) phase transitions were visually recorded. Results show that the systems investigated present UCST (upper critical solution temperature) phase transition curves with an UCEP (upper critical end point) at a temperature higher than the propane critical temperature. The experimental data were modelled using the Peng–Robinson equation of state with the Wong–Sandler and the classical quadratic mixing rules, affording a satisfactory representation of the experimental data.  相似文献   

11.
(Vapour + liquid) equilibria (VLE) and (vapour + liquid + liquid) equilibria (VLLE) data for the (carbon dioxide + 1-hexanol) system were measured at (293.15, 303.15, 313.15, 333.15, and 353.15) K. Phase behaviour measurements were made in a high-pressure visual cell with variable volume, based on the static-analytic method. The pressure range under investigation was between (0.6 and 14.49) MPa. The Soave–Redlich–Kwong (SRK) equation of state (EOS) with classical van der Waals mixing rules (two-parameters conventional mixing rule, 2PCMR), was used in a semi-predictive approach, in order to represent the complex phase behaviour (critical curve, LLV line, isothermal VLE, LLE, and VLLE) of the system. The topology of phase behaviour is reasonably well predicted.  相似文献   

12.
Total vapour pressures, measured at the temperature 313.15 K, are reported for the ternary mixture (N,N-dimethylacetamide + ethanol + water), and for binary constituent (N,N-dimethylacetamide + ethanol). The present results are also compared with previously obtained data for (amide + ethanol) binary mixtures, where amide = N-methylformamide, N,N-dimethylformamide, N-methylacetamide, 2-pyrrolidinone, and N-methylpyrrolidinone. We found that excess Gibbs free energy of mixing for binary (amide + ethanol) mixtures varies roughly linearly with the molar volume of amide.  相似文献   

13.
The solubility curves for the (carbon dioxide + 2-phenoxyethyl acrylate) and (carbon dioxide + 2-phenoxyethyl methacrylate) systems were determined by a static view cell apparatus at five temperatures (313.2, 333.2, 353.2, 373.2, and 393.2) K as well as pressures up to 31.43 MPa. Two {carbon dioxide + (meth)acrylate} systems had continuous critical mixture curves with maxima in pressure located between the critical temperatures of carbon dioxide and 2-phenoxyethyl (meth)acrylate. The solubility of 2-phenoxyethyl (meth)acrylate in the {carbon dioxide + 2-phenoxyethyl (meth)acrylate} systems increases as the temperature increases at a fixed pressure. The (carbon dioxide + 2-phenoxyethyl acrylate) and (carbon dioxide + 2-phenoxyethyl methacrylate) systems exhibit type-I phase behaviour. The experimental results for the (carbon dioxide + 2-phenoxyethyl acrylate) and (carbon dioxide + 2-phenoxyethyl methacrylate) systems correlate with the Peng–Robinson equation of state using a van der Waals one-fluid mixing rule including two adjustable parameters. The critical properties of 2-phenoxyethyl acrylate and 2-phenoxyethyl methacrylate were predicted with the Joback and Lee–Kesler method.  相似文献   

14.
The density, dynamic viscosity, and refractive index of the ternary system (ethanol + water + 1,3-dimethylimidazolium methylsulphate) at T = 298.15 K and of its binary systems 1,3-dimethylimidazolium methylsulphate with ethanol and with water at several temperatures T = (298.15, 313.15, and 328.15) K and at 0.1 MPa have been measured over the whole composition range. From these physical properties, excess molar volumes, viscosity deviations, refractive index deviations, and excess free energy of activation for the binary systems at the above mentioned temperatures, were calculated and fitted to the Redlich–Kister equation to determine the fitting parameters and the root-mean-square deviations. For the ternary system, the excess properties were calculated and fitted to Cibulka, Singh et al., and Nagata and Sakura equations. The ternary excess properties were predicted from binary contributions using geometrical solution models.  相似文献   

15.
The application of semi-clathrate hydrate formation technology for gas separation purposes has gained much attention in recent years. Consequently, there is a demand for experimental data for relevant semi-clathrate hydrate phase equilibria. In this work, semi-clathrate hydrate dissociation conditions for the system comprising mixtures of {CO2 (0.151/0.399 mole fraction) + N2 (0.849/0.601 mole fraction) + 0.05, 0.15, and 0.30 mass fraction tetra-n-butylammonium bromide (TBAB)} aqueous solutions have been measured and are reported. An experimental apparatus which was designed and built in-house was used for the measurements using the isochoric pressure-search method. The range of conditions for the measurements was from 277.1 K to 293.2 K for temperature and pressures up to 16.21 MPa. The phase equilibrium data measured demonstrate the high hydrate promotion effects of TBAB aqueous solutions.  相似文献   

16.
Accurate thermo-physical data are of utmost interest for the development of new efficient refrigeration systems. Carbon dioxide (R744) and 1,1-difluoroethane (R152a) are addressed here. Isothermal (vapor + liquid) equilibrium data are reported herein for (R744 + R152a) binary system in the (258–343) K temperature range and in the (0.14 to 7.65) MPa pressure range. A reliable “static-analytic” method taking advantage of two online ROLSI? micro capillary samplers is used for all thermodynamic measurements. The data are correlated using our in-house ThermoSoft thermodynamic model using the Peng–Robinson equation of state, the Mathias–Copeman alpha function, the Wong–Sandler mixing rules, and the NRTL model.  相似文献   

17.
Phase diagram and (liquid + liquid) equilibrium (LLE) data for the (NaNO3 + polyethylene glycol 4000 (PEG 4000) + H2O) system have been determined experimentally at T = (288.15 and 308.15) K. The effects of temperature on the binodal curves and tie-lines have been studied and it was found that an increasing in temperature caused the expansion of two-phase region. The Chen-NRTL, modified Wilson and UNIQUAC models were used to correlate the experimental tie-line data. The results show that the quality of fitting is better with the UNIQUAC model.  相似文献   

18.
Phase diagram and (liquid + liquid) equilibrium (LLE) results for {NaClO4 + polyethylene glycol 4000 (PEG 4000) + H2O} have been determined experimentally at T = (288.15, 298.15, and 308.15) K. The Chen-NRTL, modified Wilson and UNIQUAC models were used to correlate the values for the experimental tie-lines. The results show that the quality of fitting is better with the modified Wilson model.  相似文献   

19.
In this study the phase equilibrium behaviors of the binary system (CO2 + lauric acid) and the ternary system (CO2 + methanol + lauric acid) were determined. The static synthetic method, using a variable-volume view cell, was employed to obtain the experimental data in the temperature range of (293 to 343) K and pressures up to 24 MPa. The mole fractions of carbon dioxide were varied according to the systems as follows: (0.7524 to 0.9955) for the binary system (CO2 + lauric acid); (0.4616 to 0.9895) for the ternary system (CO2 + methanol + lauric acid) with a methanol to lauric acid molar ratio of (2:1); and (0.3414 to 0.9182) for the system (CO2 + methanol + lauric acid) with a methanol to lauric acid molar ratio of (6:1). For these systems (vapor + liquid), (liquid + liquid), (vapor + liquid + liquid), and (solid + fluid) transitions were observed. The phase equilibrium data obtained for the systems were modeled using the Peng–Robinson equation of state with the classical van der Waals mixing rule with a satisfactory correlation between experimental and calculated values.  相似文献   

20.
A calorimetric technique is described for measuring the enthalpy of dissociation liberated from solid hydrates. In this study, the enthalpies of dissociation were determined at T =  273.65 K andp =  0.1 MPa for simple and mixed hydrates of carbon dioxide, nitrogen, (carbon dioxide  +  nitrogen), and (carbon dioxide  +  nitrogen  +  tetrahydrofuran) using an isothermal microcalorimeter. The addition of tetrahydrofuran (THF) promoted hydrate stability and increased the number of guest molecules encaged in the small and large cavities of the hydrate lattice, resulting in lower enthalpy of dissociation, compared with structure II hydrate. The composition ratio of guest molecules did not affect the enthalpy of dissociation, which was found to be nearly constant for the same mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号