首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Alpha-Ni(OH)(2) nanobelts, nanowires, short nanowires, and beta-Ni(OH)(2) nanoplates have been successfully prepared in high yields and purities by a convenient hydrothermal method under mild conditions from very simple systems composed only of NaOH, NiSO(4), and water. It has been found that the ratio of NaOH to NiSO(4) not only affects the morphology of the Ni(OH)(2) nanostructures, but also determines whether the product is of the alpha- or beta-crystal phase. A notable finding is that porous NiO nanobelts were produced after exposure of the Ni(OH)(2) products to an electron beam for several minutes during transmission electron microscopy (TEM) observations. Another unusual feature is that rectangular nanoplates with many gaps were obtained. Furthermore, porous NiO nanobelts, nanowires, and nanoplates could also be obtained by annealing the as-prepared Ni(OH)(2) products. A sequence of dissolution, recrystallization, and oriented attachment-assisted self-assembly of nanowires into nanobelts is proposed as a plausible mechanistic interpretation for the formation of the observed structures. The method presented here possesses several advantages, including high yields, high purities, low cost, and environmental benignity. It might feasibly be scaled-up for industrial mass production.  相似文献   

2.
Hollow spheres and thin films of Ni(OH)(2) and NiO with unusual form and hierarchical structures have been synthesized by a simple solution chemistry method. First, in situ formed Ni(OH)(2) nanoflakelets organized on the surface of styrene-acrylic acid copolymer (PSA) latex particles to form core/shell structures. Ni(OH)(2) hollow shells built up with nanoflakelets were obtained after subsequent removal of the core latex particles by dissolving PSA latex in toluene; the removal of the cores by calcinations would result in NiO hollow shells, also with hierarchical structures. BET calculation showed the surface area of the NiO hollow spheres was 156 m(2)/g. The nanoflakelets could also organize themselves into thin films with hierarchical structures. It is anticipated that these novel structures will have some unique applications in Ni-based batteries and other potentials.  相似文献   

3.
Journal of Solid State Electrochemistry - In this study, layer-by-layer assembled thin films composed of nickel hydroxide and graphene oxide nanosheets were produced via simple dip coating process....  相似文献   

4.
We report here facile preparation of stabilized polymeric nanotubes with a hair-like shell using yttrium hydroxide nanotubes as the sacrificial template and block copolymer micelles as the precursor, and orientation of the polymeric nanotubes encapsulating magnetic particles under magnetic field.  相似文献   

5.
New ordered mesoporous carbons containing nickel oxide nanoparticles have been successfully synthesized by carbonization of sucrose in the presence of nickel acetate inside SBA-15 mesoporous silica template. The obtained samples were characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, and transmission electron microscopy (TEM). The NiO nanoparticles were embedded inside the mesoporous carbon framework due to the simultaneous pyrolysis of nickel acetate during carbonization. The electrochemical testing of the as-made nanocomposites showed a large specific capacitance of 230 F g−1 using 2 M KOH as the electrolyte at room temperature. This is attributed to the nanometer-sized NiO formed inside mesoporous carbons and the high surface area of the mesopores in which the NiO nanoparticles are formed. Furthermore, the synthetic process is proposed as a simple and general method for the preparation of new functionalized mesoporous carbon materials, for various applications in catalysis, sensor or advanced electrode material.  相似文献   

6.
A rechargeable battery using novel α-Fe(2)O(3)/CNFs composite as the anode, β-Ni(OH)(2) as the cathode and LiOH/KOH solution as the electrolyte in an aqueous rechargeable battery has been proposed. The Fe(2)O(3)/Ni(OH)(2) prototype cell exhibits a high average operational voltage of 1.5 V, high rate capability and good cycling performance.  相似文献   

7.
One-dimensional tubular-rod structure gold nanowires have been prepared using electrodeposition method at constant current mode with confined nanochannels of porous anodic aluminum oxide template. The reduction mechanism of gold ions and formation process of tubular-rod structure gold nanowires are studied. Electron microscopy results show that the tubular-rod structure gold nanowires transform to solid nanorods when the electrodeposition time is long enough. The tubular-rod structure gold nanowires have an average diameter of 180 nm, which coincide with the diameter of the template used. X-ray diffraction results confirm that the tubular-rod structure gold nanowires are crystalline structure.  相似文献   

8.
With a view to energetic and (opto)electronic applications, tin (IV) oxide (SnO2) nanoparticles have been successfully prepared at the nanoscale by a templating approach based on the use of zinc (II) oxide (ZnO) as template. The procedure consisted in preparing a mixture of tin precursor and template, subsequently calcined at 650 °C under air to lead to the formation of a SnO2/ZnO composite material. Finally, the material was washed with an alkali solution to remove the template. The template/tin precursor mass ratio was varied in order to tailor the tin (IV) oxide material, especially with a view to main particle size. The resulting SnO2 nanomaterials were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, nitrogen adsorption and electron microscopy. The tin (IV) oxide nanomaterial exhibited enhanced textural and physical surface properties (particle size, surface area, pore size) correlated to an increasing template/tin precursor mass ratio. For instance, from optimized experimental conditions, the specific surface area and pore volume were heightened twofold, reaching values of 49 m2/g and 0.32 cm3/g, respectively.  相似文献   

9.
通过两步法先在泡沫镍(nickel foam,NF)上原位生长Co金属有机骨架(Co metal-organic framework,Co-MOF)纳米片阵列,再浸入不同浓度Ni2+离子溶液刻蚀Co-MOF纳米片,在NF表面得到NiCo水滑石(NiCo layered double hydroxide,NiCo-LDH)。NiCo-LDH/NF继承了Co-MOF纳米片结构形成一级纳米片阵列,并在一级纳米片表面形成次级纳米片褶皱。在2 mmol Ni(NO3)2·6H2O溶液中刻蚀得到的NiCo-LDH/NF表现出高容量、高倍率性能,在电流密度为5 mA·cm-2时比电容为7 764.5 mF·cm-2,电流密度为20 mA·cm-2时比电容为6 098.2 mF·cm-2,容量保持率为78.5%,在20 A·g-1电流密度下经过5 000次长循环后,容量保持率为85.9%。与活性炭组装的混合...  相似文献   

10.
通过两步法先在泡沫镍(nickel foam,NF)上原位生长Co金属有机骨架(Co metal-organic framework,Co-MOF)纳米片阵列,再浸入不同浓度Ni2+离子溶液刻蚀Co-MOF纳米片,在NF表面得到NiCo水滑石(NiCo layered double hydroxide,NiCo-LDH)。NiCo-LDH/NF继承了Co-MOF纳米片结构形成一级纳米片阵列,并在一级纳米片表面形成次级纳米片褶皱。在2 mmol Ni(NO3)2·6H2O溶液中刻蚀得到的NiCo-LDH/NF表现出高容量、高倍率性能,在电流密度为5 mA·cm-2时比电容为7 764.5 mF·cm-2,电流密度为20 mA·cm-2时比电容为6 098.2 mF·cm-2,容量保持率为78.5%,在20 A·g-1电流密度下经过5 000次长循环后,容量保持率为85.9%。与活性炭组装的混合电容器达到38.9 Wh·kg-1的最大能量密度和8 000.0 W·kg-1的最大功率密度。  相似文献   

11.
The dehydration processes of nickel hydroxide were studied by means of thermogravimetry in a temperature range from 300 to 900 K. The kinetics of the low-temperature dehydroxylation (≈300–600 K) was studied under non-isothermal conditions. A model-free method was used to calculate the activation energy and to analyze the stepwise checking; the non-linear regression method was applied to calculate the kinetic parameters of multi-stage decomposition reactions. The features of the dehydroxylation kinetics for the multi-stage process are explained by the formation and decomposition of hydrogel and xerogel phases.  相似文献   

12.
Primary alcohols, α,ω-diols and secondary alcohols are easily transformed into carboxylic acids, dicarboxylic acids or ketones, respectively, by heterogeneous oxidation with nickel oxide hydroxide electrochemically regenerated at a nickel hydroxyde electrode. The results are discussed in comparison to those of the nickel peroxide and chromic acid oxidation. The oxidation rate decreases with increasing steric hindrance of the alcohol, thus allowing the selective oxidation of the 3-position in hydroxysteroids.  相似文献   

13.
Journal of Solid State Electrochemistry - β-Nickel hydroxide was successfully synthesized by a hydrothermal method. Nano-nickel hydroxide material was characterized by X-ray diffraction,...  相似文献   

14.
Electroless cobalt plating on spherical nickel hydroxide is tested in order to improve the conductivity of Ni(OH)2 and the capacity of the electrode. The factors affecting the process of electroless cobalt plating are cobalt solution, temperature and pH, etc. The effects have been examined and the optimum process parameters have been obtained. The nickel hydroxide electrode which is made by nickel hydroxide deposited cobalt has excellent performance, the results showing that electroless cobalt plating on the surface of spherical nickel hydroxide particles is an effective method for modifying electrodes.  相似文献   

15.
One-nanometer-thick nickel hydroxide nanosheets were prepared by exfoliation of layered nickel hydroxides intercalated with dodecyl sulfate (DS) ions. The shape of the nanosheets was hexagonal, as was that of the layered nickel hydroxides intercalated with DS ions. The nickel hydroxide nanosheets exhibited charge-discharge properties in strong alkaline electrolyte. The morphology of the nanosheet changed during the electrochemical reaction.  相似文献   

16.
用化学共沉淀法合成了A l掺杂N i(OH)2,用XRD表征了合成样品的结构特征:研究了合成样品的循环伏安性能,以及用A l掺杂N i(OH)2为正极活性物质的Zn/N i试验电池的充放电性能。研究结果表明:所合成的A l掺杂N i(OH)2为具有α-型晶体结构的材料,A l掺杂N i(OH)2具有优良的电化学可逆性、良好的充放电性能和较好的电化学循环性能;A l掺杂N i(OH)2作为正极活性物质的Zn/N i试验电池等250次充放电循环容量保持率130.1%,最高放电比容量为420.5mAh/g。  相似文献   

17.
18.
Quantitative chemical state X‐ray photoelectron spectroscopic analysis of mixed nickel metal, oxide, hydroxide and oxyhydroxide systems is challenging due to the complexity of the Ni 2p peak shapes resulting from multiplet splitting, shake‐up and plasmon loss structures. Quantification of mixed nickel chemical states and the qualitative determination of low concentrations of Ni(III) species are demonstrated via an approach based on standard spectra from quality reference samples (Ni, NiO, Ni(OH)2, NiOOH), subtraction of these spectra, and data analysis that integrates information from the Ni 2p spectrum and the O 1s spectra. Quantification of a commercial nickel powder and a thin nickel oxide film grown at 1‐Torr O2 and 300 °C for 20 min is demonstrated. The effect of uncertain relative sensitivity factors (e.g. Ni 2.67 ± 0.54) is discussed, as is the depth of measurement for thin film analysis based on calculated inelastic mean free paths. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Material synthesis using unilamellar liposomes with a high sol-gel temperature transition phase as a template leads to a new silica material.  相似文献   

20.
Nanocrystalline Ni(OH)2 powder synthesized by a chemical precipitation method was processed using the planetary ball milling (PBM), and the physical properties of both the ball-milled and unmilled Ni(OH)2 were characterized by scanning electron microscopy (SEM), specific surface area, particle size distribution, and X-ray diffraction. It was found that the PBM processing could significantly break up the agglomeration, uniformize the particle size distribution, increase the surface area, decrease the crystallite size, and reduce the crystallinity of nanocrystalline β-Ni(OH)2, which were advantageous to the improvement of the electrochemical activity of Ni(OH)2. The ball-milled nanocrystalline (BMN) Ni(OH)2 was then used to alter the microstructure of pasted nickel electrodes and improve the distribution of the active material in the porous electrode substrate. Electrochemical performances of pasted nickel electrodes with a mixture of BMN and spherical Ni(OH)2 as the active material were investigated, and were compared with those of pure spherical Ni(OH)2 electrodes. Charge/discharge tests showed that BMN Ni(OH)2 addition could enhance the charging efficiency, specific discharge capacity, discharge voltage, and high-rate capability of pasted nickel electrodes. This performance improvement could be attributed to a more compact electrode microstructure, better reaction reversibility, and lower electrochemical impedance, as indicated by SEM, cyclic voltammetry, and electrochemical impedance spectroscopy. Thus, it was an effective method to modify the microstructure and improve the electrochemical properties of pasted nickel electrodes by adding an appropriate amount of BMN Ni(OH)2 to spherical Ni(OH)2 as the active material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号