首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Green’s functions for isotropic materials in the two-dimensional problem for elastic bimaterials with perfectly bonded interface are reexamined in the present study. Although the Green’s function for an isotropic elastic bimaterial subjected to a line force or a line dislocation has been discussed by many authors, the physical meaning and the structure of the solution are not clear. In this investigation, the Green’s function for an elastic bimaterial is shown to consist of eight Green’s functions for a homogeneous infinite plane. One of the novel features is that Green’s functions for bimaterials can be expressed directly by knowing Green’s functions for the infinite plane. If the applied load is located in material 1, the solution for the half-plane of material 1 is constructed with the help of five Green’s functions corresponding to the infinite plane. However, the solution for the half-plane of material 2 only consists of three Green’s functions for the infinite plane. One of the five Green’s functions of material 1 and all the three Green’s functions of material 2 have their singularities located in the half-plane where the load is applied, and the other four image singularities of material 1 are located outside the half-plane at the same distance from the interface as that of the applied load. The nature and magnitude of the image singularities for both materials are presented explicitly from the principle of superposition, and classified according to different loads. It is known that for the problem of anisotropic bimaterials subjected to concentrated forces and dislocations, the image singularities are simply concentrated forces and dislocations with the stress singularity of order O(1/r). However, higher orders (O(1/r2) and O(1/r3)) of stress singularities are found to exist in this study for isotropic bimaterials. The highest order of the stress singularity is O(1/r3) for the image singularities of material 1, and is O(1/r2) for material 2. Using the present solution, Green’s functions associated with the problems of elastic half-plane with free and rigidly fixed boundaries, for homogeneous isotropic elastic solid, are obtained as special cases.  相似文献   

2.
The problem of a planar transversely isotropic magnetoelectroelastic layered half-plane subjected to generalized line forces and edge dislocations is analyzed. The complete solutions consist only of the simplest solutions for an infinite magnetoelectroelastic medium with applied loadings. The physical meaning of this solution is the image method. It is shown that the explicit solutions include Green's function for originally applied singularities in an infinite medium and the other image singularities are induced to satisfy free surface and interface continuity conditions. The mathematical method used in this study provides an automatic determination for the locations and magnitudes of all image singularities. The locations and magnitudes of image singularities are dependent on the roots of the characteristic equation which is related to the material constants of the layered half-plane. With the aid of the generalized Peach-Koehler formula, the explicit expressions of image forces acting on dislocations are easily derived from the full-field solutions of the generalized stresses. Numerical results for the full-field distributions of stresses, electric fields, and magnetic fields in the layered half-plane medium are presented based on the analytical solutions. The image forces and equilibrium positions of one dislocation, two dislocations, and an array of dislocations are presented by numerical calculations and are discussed in detail.  相似文献   

3.
We investigate the surface instability of an anisotropic elastic half-plane subjected to surface van der Waals forces due to the influence of another rigid contactor by means of the Stroh formalism. It is observed that the surface of a generally anisotropic elastic half-plane subjected to van der Waals forces from another rigid flat is always unstable. The wave number of the surface wrinkling is only reliant on the positive M22 component of the 3 × 3 surface admittance tensor M, the van der Waals interaction coefficient β and the surface energy γ of the elastic half-plane. The decay rate of surface perturbation along the direction normal to the surface of the anisotropic half-plane is different from the wave number, a phenomenon different from that observed for an isotropic half-plane.  相似文献   

4.
This study presents two-dimensional explicit full-field solutions of transversely isotropic magnetoelectroelastic bimaterials subjected to generalized line forces and edge dislocations using the Fourier-transform technique. One of the major objectives of this study is to analyze the physical meaning and the structure of the solution. Complete solutions for this problem consist only of the simplest solutions for an infinite medium. The solutions include Green's function of originally applied singularities in an infinite medium and thirty-two image singularities which are induced to satisfy interface continuity conditions. It is shown that the physical meaning of the solution is the image method. The mathematical method used in this study provides an automatic determination for the locations and magnitudes of image singularities. The locations and magnitudes of image singularities are dependent on the roots of the characteristic equation for bimaterials. The number and distribution for image singularities are discussed according to characteristic roots features. With the aid of the generalized Peach–Koehler formula, the explicit expressions of image forces acting on generalized edge dislocations are easily derived from the full-field solutions of the generalized stresses. Numerical results for the full-field distributions of stresses, electric fields, and magnetic fields in bimaterials are presented. The image forces and equilibrium positions of one dislocation, two dislocations, and an array of dislocations are presented by numerical calculations and are discussed in detail.  相似文献   

5.
We derive, by virtue of the unified Stroh formalism, the extremely concise and elegant solutions for two-dimensional and (quasi-static) time-dependent Green's functions in anisotropic magnetoelectroelastic multiferroic bimaterials with a viscous interface subjected to an extended line force and an extended line dislocation located in the upper half-plane. It is found for the first time that, in the multiferroic bimaterial Green's functions, there are 25 static image singularities and 50 moving image singularities in the form of the extended line force and extended line dislocation in the upper or lower half-plane. It is further observed that, as time evolves, the moving image singularities, which originate from the locations of the static image singularities, will move further away from the viscous interface with explicit time-dependent locations. Moreover, explicit expression of the time-dependent image force on the extended line dislocation due to its interaction with the viscous interface is derived, which is also valid for mathematically degenerate materials. Several special cases are discussed in detail for the image force expression to illustrate the influence of the viscous interface on the mobility of the extended line dislocation, and various interesting features are observed. These Green's functions can not only be directly applied to the study of dislocation mobility in the novel multiferroic bimaterials, they can also be utilized as kernel functions in a boundary integral formulation to investigate more complicated boundary value problems where multiferroic materials/composites are involved.  相似文献   

6.
The electro-elastic stress investigation on the interaction between a screw dislocation and a half-plane trimaterial composite composed of three bonded dissimilar transversely isotropic piezoelectric materials is analyzed in the framework of linear piezoelectricity. Each layer is assumed to have the same material orientation with x 3 in the poling direction. The dislocations are characterized by a discontinuous displacement and electric potential across the slip plane and are subjected to a line force and a line charge at the core. Based on the complex variable and the method of alternating technique, the solution of electric field and displacement field is expressed in terms of explicit series form. The solutions derived here can be applied to a variety of problems, for example, a half-plane bimaterial, a quarter-plane bimaterial, a quarter-plane material and a rectangular strip etc. Numerical results are provided to show the influences of the material combinations and geometric configurations on the electro-elastic fields and image force calculated through the generalized Peach-Koehler formula. The solutions proposed here can be served as Green??s functions for the analyses corresponding piezoelectric cracking problems.  相似文献   

7.
8.
Supersonic responses of an anisotropic half-plane solid induced by a point load moving steadily on the half-plane boundary are investigated. Analytic expressions for the responses of the displacements and stresses for field points either inside or on the surface of the half-plane solid are given for general anisotropic materials. For the special cases of monoclinic materials with symmetry plane at x3=0 and orthotropic materials, the supersonic as well as subsonic responses of the displacements and stresses are further expressed explicitly in terms of elastic stiffnesses. Responses for the case of isotropic materials known in the literature are recoverable from present results.  相似文献   

9.
An oblique edge crack in an anisotropic material under antiplane shear loadings is investigated. The antiplane problems are formulated based on a linear transformation method. An anisotropic solid containing an edge crack subjected to concentrated forces is first considered. The stress intensity factor for the edge crack with concentrated forces is obtained from the solution of the transformed edge crack in an isotropic material which is solved by using conformal mapping technique and complex function theory. The solution of the edge crack under concentrated loads is used to construct the stress intensity factor for the oblique edge crack in the anisotropic material subjected to antiplane distributed loads. Some numerical computations are carried out to calculate the stress intensity factors for the edge crack in inclined orthotropic materials subjected to point forces as well as distributed tractions.  相似文献   

10.
Thermodynamically and mathematically consistent constitutive equations suitable for shock wave propagation in an anisotropic material are presented in this paper. Two fundamental tensors αij and βij which represent anisotropic material properties are defined and can be considered as generalisations of the Kronecker delta symbol, which plays the main role in the theory of isotropic materials. Using two fundamental tensors αij and βij, the concept of total generalised “pressure” and pressure corresponding to the thermodynamic (equation of state) response are redefined. The equation of state represents mathematical and physical generalisation of the classical Mie–Grüneisen equation of state for isotropic material and reduces to the Mie–Grüneisen equation of state in the limit of isotropy. Based on the generalised decomposition of the stress tensor, the modified equation of state for anisotropic materials, and the modified Hill criteria, combined with the associated flow rule, a system of constitutive equations suitable for shock wave propagation is formulated. The behaviour of aluminium alloy 7010-T6 under shock loading conditions is considered. A comparison of numerical simulations with existing experimental data shows good agreement of the general pulse shape, Hugoniot Elastic Limits (HELs), and Hugoniot stress levels, and suggests that the constitutive equations are performing satisfactorily. The results are presented and discussed, and future studies are outlined.  相似文献   

11.
The three Barnett-Lothe tensorsS, H, andL appear frequently in the real form solutions of two-dimensional anisotropic elasticity problems. Explicit expressions for the components of these tensors are presented for general anisotropic materials. The special cases of monoclinic materials with the plane of material symmetry at x3=0, x2=0, and x1=0 are then deduced. For monoclinic materials with the symmetry plane at x2=0 or x1=0, the locations of image singularities for the Green's functions for a half-space have a special geometry.  相似文献   

12.
When an elastic composite wedge is not under a plane strain deformation, an out-of-the-plane extensional strain exists. The singularity analysis for the stresses at the apex of the composite wedge reduces to a system of non-homogeneous linear equations. When the composite wedge consists of two anisotropic elastic materials, it is shown that the stresses have the (ln r) term for all combinations of wedge angles with few exceptions. The same is true when the materials are isotropic except that the (ln r) term may appear in the form of r(ln r) in the displacements only. For these isotropic composite wedges therefore the stresses are bounded, though not continuous, at the apex. However, there are isotropic composite wedges for which the stress singularity is logarithmic. Conditions are given for isotropic composite wedges for which the stresses are (a) uniform, (b) non-uniform but bounded and (c) logarithmic. Unlike the r−λ singularity, the existence of the (ln r) term does not depend on the complete boundary conditions.  相似文献   

13.
The complete solution space of a piezoelectric material is the direct sum of several orthogonal eigenspaces, one for each distinct eigenvalue. Each one of the 14 different classes of piezoelectric materials has a distinct form of the general solution, expressed in terms of the eigenvectors of the zeroth and higher orders and a kernel matrix containing analytic functions. When these functions are chosen to be logarithmic, one obtains, in a unified way, Green’s function of the infinite space as a single 8 × 8 matrix function G for the various load cases of concentrated line forces, dislocations, and a line charge. This expression of Green’s function is valid for all classes of nondegenerate and degenerate materials. With an appropriate choice of the parameters, it reduces to the solution of a half space with concentrated (line) forces at a boundary point, and with dislocations in the displacements. As another application, eigenvalues and eigensolutions are obtained for the bimaterial interface crack problem.  相似文献   

14.
Surface responses induced by point load or uniform traction moving steadily with subsonic speed on an anisotropic half-plane boundary are investigated. It is found that the effects of the material constant on surface displacements are through matrices L?1(v) and S(v)L?1(v), while those on surface stress components are through matrices Ω(v) and Γ(v). Explicit expressions for the elements of these four matrices are expressed in terms of elastic stiffness for general anisotropic materials. The special cases of monoclinic materials with symmetry plane at x1 = 0, x2 = 0 and x3 = 0, and the case for orthotropic materials are all deduced. Results for isotropic material may be recovered from present results. For monoclinic materials with a plane of symmetry at x3 = 0, two of the elements of matrix Ω(v) are found to be independent of subsonic speed.  相似文献   

15.
In a half-plane problem with x1 paralleling with the straight boundary and x2 pointing into the medium, the stress components on the boundary whose acting plane is perpendicular to x1 direction may be denoted by t1 = [σ11, σ12, σ13]T. Stress components σ11 and σ13 are of more interests since σ12 is completely determined by the boundary conditions. For isotropic materials, it is known that under uniform normal loading σ11 is constant in the loaded region and vanishes in the unloaded part. Under uniform shear loading, σ11 will have a logarithmic singularity at the end points of shear loading. In this paper, the behavior of the stress components σ11 and σ13 induced by traction-discontinuity on general anisotropic elastic surfaces is studied. By analyzing the problem of uniform tractions applied on the half-plane boundary over a finite loaded region, exact expressions of the stress components σ11 and σ13 are obtained which reveal that these components consist of in general a constant term and a logarithmic term in the loaded region, while only a logarithmic term exists in unloaded region. Whether the constant term or the logarithmic term will appear or not completely depends on what values of the elements of matrices Ω and Γ will take for a material under consideration. Elements for both matrices are expressed explicitly in terms of elastic stiffness. Results for monoclinic and orthotropic materials are all deduced. The isotropic material is a special case of the present results.  相似文献   

16.
In the analysis of an elastic two-dimensional solid body by means of the Symmetric Galerkin Boundary Element Method (SGBEM), difficulties arise in the computation of some terms of the solving system coefficients. In fact these coefficients are expressed as double integrals with singularities of order 1/r2, r being the distance between the field and source points. In order to compute these coefficients a strategy based on Schwartz's distribution theory is employed. In this paper the direct stiffness matrix related to the generic node of the free boundary are computed in closed form.  相似文献   

17.
Necessary and sufficient conditions are established for the stress response of a linearly elastic material to an isotropic stain to be hydrostatic. In the 3D case, these conditions are satisfied not only by the isotropic and cubic materials but also by all other anisotropic materials provided appropriate restrictions are imposed. In the 2D case, only the isotropic and square materials have an isotropic stress response to an isotropic strain. Using a uniform field argument, the elastic bulk modulus of a polycrystal consisting of monocrystals compatible with the established conditions is shown to equal that of any constituent monocrystal. Thus, Hill's relevant result about a polycrystal composed of cubic monocrystals is generalized. To cite this article: Q.-C. He, C. R. Mecanique 331 (2003).  相似文献   

18.
The paper is devoted to the analysis of monochromatic waves in two-component poroelastic materials described by a Biot-like model whose stress–strain relations are isotropic but the permeability is anisotropic. This anisotropy is induced by the anisotropy of the tortuosity which is given by a second order symmetric tensor. This is a new feature of the model while in earlier papers only isotropic permeabilities were considered. We show that this new model describes four modes of propagation. For our special choice of orientation of the direction of propagation these are two pseudo longitudinal modes P1 and P2, one pseudo transversal mode S2 and one transversal mode S1. The latter becomes also pseudo transversal in the general case of anisotropy. We analyze the speeds of propagation and the attenuation of these waves as well as the polarization properties in dependence on the orientation of the principal directions of the tortuosity. We indicate the practical importance of different shear (transversal) modes of propagation in a possible new nondestructive test of geophysical materials.  相似文献   

19.
A body force concentrated at a point and moving at a high speed can induce shear-wave Mach cones in dusty-plasma crystals or soft materials, as observed experimentally and named the elastic Cherenkov effect (ECE). The ECE in soft materials forms the basis of the supersonic shear imaging (SSI) technique, an ultrasound-based dynamic elastography method applied in clinics in recent years. Previous studies on the ECE in soft materials have focused on isotropic material models. In this paper, we investigate the existence and key features of the ECE in anisotropic soft media, by using both theoretical analysis and finite element (FE) simulations, and we apply the results to the non-invasive and non-destructive characterization of biological soft tissues. We also theoretically study the characteristics of the shear waves induced in a deformed hyperelastic anisotropic soft material by a source moving with high speed, considering that contact between the ultrasound probe and the soft tissue may lead to finite deformation. On the basis of our theoretical analysis and numerical simulations, we propose an inverse approach to infer both the anisotropic and hyperelastic parameters of incompressible transversely isotropic (TI) soft materials. Finally, we investigate the properties of the solutions to the inverse problem by deriving the condition numbers in analytical form and performing numerical experiments. In Part II of the paper, both ex vivo and in vivo experiments are conducted to demonstrate the applicability of the inverse method in practical use.  相似文献   

20.
An expression for the yield stress of anisotropic materials is applied to the anisotropic strength of hard rolled copper foils whose crystallographic texture is known. We assume that this crystallographic texture is the only cause of the anisotropic plastic behaviour of the material. The model used for the yield stress is also used to deduce:
  1. Stress-strain relations for isotropic polycrystalline materials;
  2. A formula for the fully plastic strain tensor, applied to anisotropic hard rolled copper foils.
For the anisotropic copper foils considered the calculated curves of the yield stress and of the strain tensor as a function of the angle x between rolling and tensile direction agree qualitatively with the measured values. However, the theory is not complete, since the yield stress and the plastic strain tensor are both a function of a parameter Q, the fraction of the number of available crystallographic slip planes on which the maximum shear stress has reached the critical value τa. We assume that for “fully” plastic deformation a certain critical fraction Q e of the total number of slip planes has to be active. The fraction Q e is called the critical active quantity. With the parameter Q e we adjust the calculated curves to the measured ones. The dependence of Q e on the properties of the material (e.g. the crystallographic texture) is discussed in Appendix I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号