首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
We present a method to identify the symmetry class of an elasticity tensor whose components are given with respect to an arbitrarily oriented coordinate system. The method is based on the concept of distance in the space of tensors, and relies on the monoclinic or transversely isotropic distance function. Since the orientation of a monoclinic or transversely isotropic tensor depends on two Euler angles only, we can plot the corresponding distance functions on the unit sphere in ℝ3 and observe the symmetry pattern of the plot. In particular, the monoclinic distance function vanishes in the directions of the normals of the mirror planes, so the number and location of the zeros allows us to identify the symmetry class and the orientation of the natural coordinate system. Observing the approximate locations of the zeros on the plot, we can constrain a numerical algorithm for finding the exact orientation of the natural coordinate system.  相似文献   

2.
In this paper we provide a complete and irreducible representation for transversely isotropic sixth order tensors having minor symmetries. Such tensors appear in some practical problems of elasticity for which their inversion is required. For this kind of tensors, we provide an irreducible basis which possesses some remarkable properties, allowing us to provide a representation in a compact form which uses two scalars and three matrices of dimension 2, 3 and 4. It is shown that the calculation of sum, product and inverse of transversely isotropic sixth order tensors is greatly simplified by using this new formalism and appears to be appropriate for deriving new various solutions to some practical problems in mechanics which use such kinds of higher order tensors. For instance, we derive the fields within a cylindrical inhomogeneity submitted to remote gradient of strain. The method of resolution uses the Eshelby equivalent inclusion method extended to the case of a polynomial type eigenstrain. It is shown that the approach leads to a linear system involving a sixth order tensor whose closed form solution is derived by means of the tensorial formalism introduced in the first part of the paper.  相似文献   

3.
The effective elastic behavior of a transversely isotropic composite made from two incompressible elastic materials is examined. The set of all effective elasticity tensors for transversely isotropic finite rank laminar microstructures is described. The extremal property of this class of microstructures is used to derive a new more precise characterization of the set of effective shear moduli.The perturbation series for the effective elasticity tensor is considered. An explicit formula for the second order perturbation tensor is derived. We describe precisely the set of tensors that correspond to all second order perturbations consistent with transverse isotropy. We apply analytic methods [cf. 27] to show that all second order perturbation tensors are realized by finite rank laminar microstructures.Supported by NSF through Grant DMS-3907658.  相似文献   

4.
当材性试验数据有限时,为了研究各力学参数的离散性和不确定性对结构性能计算的影响,需要对材料参数采用随机变量建模并基于概率理论构建刚度矩阵的随机模型。为此,首先将随机弹性张量分解为一组基张量和由材料参数构成的随机系数的线性组合,以考虑刚度矩阵各分量间的统计相关性;并利用最大熵原理确定由上述随机系数组成的随机向量的概率密度函数。采用基于Metropolis-Hasting算法的马尔科夫链蒙特卡罗方法用于计算与之相关的概率模型的拉格朗日乘子,并通过Matlab生成材料参数的随机样本。最后采用蒙特卡罗随机有限元法对横观各向同性材料构成的板式结构在不同荷载下的力学行为进行了数值分析。以刨花板材料为典型案例,与试验结果对比,验证了本文方法的效果和实用性。  相似文献   

5.
6.
Using orthogonal projections, we investigate distance of a given elasticity tensor to classes of elasticity tensors exhibiting particular material symmetries. These projections depend on the orientation of the elasticity tensor; hence the distance is obtained as the minimization of corresponding expressions with respect to the action of the orthogonal group. These expressions are stated in terms of the eigenvalues of both the given tensor and the projected one. The process of minimization is facilitated by the fact that, as we prove, the traces of the corresponding Voigt and dilatation tensors are invariant under these orthogonal projections. For isotropy, cubic symmetry and transverse isotropy, we formulate algorithms to find both the orientation and the eigenvalues of the elasticity tensor endowed with a particular symmetry and closest to the given elasticity tensor.   相似文献   

7.
In this paper we propose a formulation of polyconvex anisotropic hyperelasticity at finite strains. The main goal is the representation of the governing constitutive equations within the framework of the invariant theory which automatically fulfill the polyconvexity condition in the sense of Ball in order to guarantee the existence of minimizers. Based on the introduction of additional argument tensors, the so-called structural tensors, the free energies and the anisotropic stress response functions are represented by scalar-valued and tensor-valued isotropic tensor functions, respectively. In order to obtain various free energies to model specific problems which permit the matching of data stemming from experiments, we assume an additive structure. A variety of isotropic and anisotropic functions for transversely isotropic material behaviour are derived, where each individual term fulfills a priori the polyconvexity condition. The tensor generators for the stresses and moduli are evaluated in detail and some representative numerical examples are presented. Furthermore, we propose an extension to orthotropic symmetry.  相似文献   

8.
We consider the problem of finding the transversely isotropic elasticity tensor closest to a given elasticity tensor with respect to the Frobenius norm. A similar problem was considered by other authors and solved analytically assuming a fixed orientation of the natural coordinate system of the transversely isotropic tensor. In this paper we formulate a method for finding the optimal orientation of the coordinate system—the one that produces the shortest distance. The optimization problem reduces to finding the absolute maximum of a homogeneous eighth-degree polynomial on a two-dimensional sphere. This formulation allows us a convenient visualization of local extrema, and enables us to find the closest transversely isotropic tensor numerically.   相似文献   

9.
Padovani  Cristina 《Meccanica》2002,37(6):515-525
The strong ellipticity of the elasticity tensor of a linearly hyperelastic, transversely isotropic material is investigated. The necessary and sufficient conditions for the elasticity tensor to be strongly elliptic are determined for the five constants characterizing it.  相似文献   

10.
The Kelvin approach describing the structure of the generalized Hooke’s law is used to analyze the potential model of anisotropic creep of materials. The creep equations of incompressible transversely isotropic, orthotropic materials and those with cubic symmetry are considered. The eigen coefficients of anisotropy and eigen tensors for the anisotropy tensors of these materials are determined.  相似文献   

11.
Obtaining the Green tensor for the most general orthotropic medium is not generally possible in a closed form because the solution requires the roots of a sextic, often known as Stroh eigenvalues. The paper gives some conditions under which the sextic can be solved in a closed form for any direction within the space. It enables the construction of classes of orthotropic materials for which the Green tensor can be computed in a closed form (closed-form orthotropic or CFO) for any direction within the space. The cases of transversely isotropic, tetragonal and cubic materials are studied as special cases. The comparison between the exact Green function and approximate Green functions obtained from the nearest CFO material (in the sense of four different distances) is finally performed in the case of five examples of elasticity tensors.  相似文献   

12.
Initially isotropic aggregates of crystalline grains show a texture-induced anisotropy of both their inelastic and elastic behavior when submitted to large inelastic deformations. The latter, however, is normally neglected, although experiments as well as numerical simulations clearly show a strong alteration of the elastic properties for certain materials. The main purpose of the work is to formulate a phenomenological model for the evolution of the elastic properties of cubic crystal aggregates. The effective elastic properties are determined by orientation averages of the local elasticity tensors. Arithmetic, geometric, and harmonic averages are compared. It can be shown that for cubic crystal aggregates all of these averages depend on the same irreducible fourth-order tensor, which represents the purely anisotropic portion of the effective elasticity tensor. Coupled equations for the flow rule and the evolution of the anisotropic part of the elasticity tensor are formulated. The flow rule is based on an anisotropic norm of the stress deviator defined by means of the elastic anisotropy. In the evolution equation for the anisotropic part of the elasticity tensor the direction of the rate of change depends only on the inelastic rate of deformation. The evolution equation is derived according to the theory of isotropic tensor functions. The transition from an elastically isotropic initial state to a (path-dependent) final anisotropic state is discussed for polycrystalline copper. The predictions of the model are compared with micro–macro simulations based on the Taylor–Lin model and experimental data.  相似文献   

13.
A complete and unified study of symmetries and anisotropies of classical and micropolar elasticity tensors is presented by virtue of a novel method based on a well-chosen complex vector basis and algebra of complex tensors. It is proved that every elasticity tensor has nothing but 1-fold, 2-fold, 3-fold, 4-fold and ∞-fold symmetry axes. From this fact it follows that the crystallographic symmetries plus the isotropic symmetry are complete in describing the symmetries of any kind of classical elasticity tensors and micropolar elasticity tensors. Further, it is proved that for each given integer m>>2 every classical Green elasticity tensor with an m-fold symmetry axis must have at least m elastic symmetry planes intersecting each other at this symmetry axis. From this fact and the aforementioned fact it follows that for all possible material symmetry groups, there exist only eight distinct symmetry classes for classical Green elasticity tensors, which correspond to the isotropy group and the seven crystal classes S 2, C 2h , D 2h , D 3d , D 4h , D 6h and O h , while it is shown that there exist twelve distinct symmetry classes for any other kind of elasticity tensors, including the classical Cauchy elasticity tensor and the micropolar elasticity tensors, which correspond to the eight subgroup classes just mentioned and the four crystal classes S 6, C 4h , C6h and T h . From these results, it turns out that all possible elasticity symmetry groups are nothing but the full orthogonal group, the transverse isotropy groups C h and D h , and the nine centrosymmetric crystallographic point groups except C 6h and D 6h . This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
We consider the inverse problem of identifying the density and elastic moduli for three-dimensional anisotropic elastic bodies, given displacement and traction measurements made at their surface. These surface measurements are modelled by the dynamic Dirichlet-to-Neumann map on a finite time interval. For linear or nonlinear anisotropic hyperelastic bodies we show that the displacement-to-traction surface measurements do not change when the density and elasticity tensor in the interior are transformed tensorially by a change of coordinates fixing the surface of the body to first order. Our main tool, a new approach in inverse problems for elastic media, is the representation of the equations of motion in a covariant form (following Marsden and Hughes, 1983) that preserves the underlying physics.In the case of classical linear elastodynamics we then investigate how the type of anisotropy changes under coordinate transformations. That is, we analyze the orbits of general linear, anisotropic elasticity tensors under the action by pull-back of diffeomorphisms that fix the surface of the elastic body to first order, and derive a pointwise characterization of parts of the orbits under this action. For example, we show that the orbit of isotropic elastic media, at any point in the body, consists of some transversely isotropic and some orthotropic elastic media. We then derive the first uniqueness result in the inverse problem for anisotropic media using surface displacement-traction data: uniqueness of three elastic moduli for tensors in the orbit of isotropic elasticity tensors. Partially supported by an MSRI Postdoctoral Fellowship. Research at MSRI is supported in part by NSF grant DMS-9850361. This work was conducted while the first author was a Gibbs Instructor at Yale University. Partially supported by an MSRI Postdoctoral Fellowship, and by NSF grant DMS-9801664 (9996350).  相似文献   

15.
We extend the material symmetry group of the non-linear polar-elastic continuum by taking into account microstructure curvature tensors as well as different transformation properties of polar and axial tensors. The group consists of an ordered triple of tensors which makes the strain energy density of polar-elastic continuum invariant under change of reference placement. An analog of the Noll rule is established. Four simple specific cases of the group with corresponding reduced forms of the strain energy density are discussed. Definitions of polar-elastic fluids, solids, liquid crystals and subfluids are given in terms of members of the symmetry group. Within polar-elastic solids we discuss in more detail isotropic, hemitropic, cubic-symmetric, transversely isotropic, and orthotropic materials and give explicitly corresponding reduced representations of the strain energy density. For physically linear polar-elastic solids, when the density becomes a quadratic function of strain measures, reduced representations of the density are established for monoclinic, orthotropic, cubic-symmetric, hemitropic and isotropic materials in terms of appropriate joint scalar invariants of stretch, wryness and undeformed structure curvature tensors.  相似文献   

16.
Material tensors pertaining to polycrystalline aggregates should manifest also the influence of crystallographic texture on the material properties in question. In this paper we make use of tensors which form bases of irreducible representations of the rotation group and prove a representation theorem by which a given material tensor of a weakly-textured polycrystal is expressed as a linear combination of an orthonormal set of irreducible basis tensors, with the components given explicitly in terms of texture coefficients and a set of undetermined material parameters. Once the irreducible basis tensors that appear in the formula are determined, the representation formula, which is valid for all texture and crystal symmetries, will delineate quantitatively the effect of crystallographic texture on the material tensor in question. We present an integral formula and an orthonormalization process which serve as the basis for a procedure to determine explicitly the irreducible basis tensors required in the representation formula. For applications we determine a set of irreducible basis tensors for the elasticity tensor and a set for fourth-order tensors that define constitutive equations in incompressible elasticity and Hill’s quadratic yield functions in plasticity. We show that orientation averaging of a tensor can be done easily if we have in hand a set of irreducible basis tensors for the decomposition of the tensor in question. As illustration we derive a formula, which is valid for all texture and crystal symmetries, for the elasticity tensor under the Voigt model.  相似文献   

17.
In invariant tensor form, the laws of viscoplastic fluid flow are formulated for capillary and fractured media with a periodic microstructure that has orthotropic and transversely isotropic symmetry in the flow properties. An analysis of the laws of viscoplastic fluid flow in transversely isotropic and orthotropic porous and fractured media shows that in formulating the equations it is necessary to distinguish between the permeability tensor and the limiting gradient tensor, which may differ in the symmetry of the flow characteristics, and that the flow law is multivariant and admits one-, two-, and three-dimensional flows.  相似文献   

18.
Following a framework of elastic degradation and damage previously proposed by the authors, an ‘extended’ formulation of orthotropic damage in initially isotropic materials, based on volumetric/deviatoric decomposition, is presented. The formulation is founded on the concept of energy equivalence and makes use of second-order symmetric tensor damage variables. It is characterized by fourth-order damage-effect tensors (relating nominal to effective stresses and strains) built from the underlying second-order damage tensors and decomposed in product-form in isotropic and anisotropic parts. The formulation is developed in two steps. First, secant relations are established. In the isotropic case, the model embeds a path parameter allowing to range between pure volumetric to pure deviatoric damage. With the two undamaged material constants this makes a total of three constant parameters plus an evolving scalar damage variable, giving rise to a four-parameter model with two varying isotropic material coefficients. In the anisotropic case, the model is still characterized by the same three material constants plus three evolving variables which are the principal values of a second-order damage tensor. This leads to a six-parameter restricted form of orthotropic damage. In the second step, damage evolution rules are formulated in terms of a pseudo-logarithmic rate of damage. This allows to define meaningful conjugate forces that constitute a feasible space in which loading functions and damage evolution rules can be defined. The present ‘extended’ formulation is closed by the derivation of the tangent stiffness.  相似文献   

19.
The Rapoport-Leas mathematical model of two-phase flow is generalized to include the case of anisotropic porous media. The formula for the capillary pressure, which specifies the relationship between the phase pressures, contains a scalar function of a vector argument. In order to determine the scalar function, the capillary pressure tensor and the tensor inverse to the tensor of characteristic linear dimensions are introduced. The capillary pressure is determined by the contraction of the second-rank tensors with a unit vector collinear to the phase pressure gradients, also assumed to be collinear. It is shown that the saturation function introduced for isotropic porous media (Leverett function) can be generalized to include anisotropic media and is now determined by a fourth-rank tensor. Generalized expressions for the Leverett and relative phase permeability functions are given for orthotropic and transversely isotropic media with account for the hysteresis of the phase permeabilities and capillary pressure.  相似文献   

20.
We consider various methods for constructing linearly independent isotropic, gyrotropic, orthotropic, and transversally isotropic tensors. We state assertions and theorem that permit one to construct these tensors. We find linearly independent above-mentioned tensors up to and including rank six. The components of the tensor may have no symmetry or have symmetries of various types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号