首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-order methods that can resolve interactions of flow-disturbances with shock waves are critical for reliable numerical simulation of shock wave and turbulence interaction. Such problems are not well understood due to the limitations of numerical methods. Most of the popular shock-capturing methods are only first-order accurate at the shock and may incur spurious numerical oscillations near the shock. Shock-fitting algorithms have been proposed as an alternative which can achieve uniform high-order accuracy and can avoid possible spurious oscillations incurred in shock-capturing methods by treating shocks as sharp interfaces. We explore two ways for shock-fitting: conventional moving grid set-up and a new fixed grid set-up with front tracking. In the conventional shock-fitting method, a moving grid is fitted to the shock whereas in the newly developed fixed grid set-up the shock front is tracked using Lagrangian points and is free to move across the underlying fixed grid. Different implementations of shock-fitting methods have been published in the literature. However, uniform high-order accuracy of various shock-fitting methods has not been systematically established. In this paper, we carry out a rigorous grid-convergence analysis on different variations of shock-fitting methods with both moving and fixed grids. These shock-fitting methods consist of different combinations of numerical methods for computing flow away from the shock and those for computing the shock movement. Specifically, we consider fifth-order upwind finite-difference scheme and shock-capturing WENO schemes with conventional shock-fitting and show that a fifth-order convergence is indeed achieved for a canonical one-dimensional shock-entropy wave interaction problem. We also show that the method of finding shock velocity from one characteristic relation and Rankine–Hugoniot jump condition performs better than the other methods of computing shock velocities. A high-order front-tracking implementation of shock-fitting is also presented in this paper and nominal rate of convergence is shown. The front-tracking results are validated by comparing to results from the conventional shock-fitting method and a linear-interaction analysis for a two-dimensional shock disturbance interaction problem.  相似文献   

2.
3.
柏劲松  李平  张展冀  华劲松  谭华 《中国物理》2004,13(12):1992-1998
In this paper, we have numerically solved the multi-fluid problems using an operator-split two-step high-resolution Godunov PPM (parabolic piecewise method) for the flow in complex geometries. By using the front capturing method,the PPM integrator captures the interface in the solution process. The basic multi-fluid integrator is coupled to a Cartesian grid algorithm where a VOF (volume of fluid) representation of the fluid interface is also used. As an application of this method, we test the 2D interracial advection example and simulate an experimental hypervelocity launcher model from Sandia National Laboratories. The computational design of the hypervelocity launcher is also given in the paper.  相似文献   

4.
采用双曲函数展开法得到Modified Benjamin-Bona-Mahony(mBBM)方程的一类扭结-反扭结状的双扭结孤立波解,在不同的极限情况下,此孤立波分别退化为mBBM方程的扭结状和钟状孤立波解.对双扭结型单孤子的结构特征进行分析,构造有限差分格式对其动力学稳定性进行数值研究.有限差分格式为两层隐式格式,在线性化意义下无条件稳定.数值结果表明mBBM方程的双扭结型单孤子在不同类型的扰动下均具有很强的稳定性.对双孤立波的碰撞进行数值模拟,发现既存在弹性碰撞也存在非弹性碰撞.  相似文献   

5.
The three-body Coulomb problem for nuclear clusters is solved numerically for a model below three-body breakup threshold. An orthogonalized multi-channels method is employed. The method allows to check for convergence by considering the norm square of the closed-channels part of the wave function. The numerical results show that convergence can well be achieved on present-day computers.  相似文献   

6.
We investigate the spectral stability of the travelling wave solution for the coupled motion of a free surface and grain boundary that arises in materials science. In this problem a grain boundary, which separates two materials that are identical except for their crystalline orientation, evolves according to mean curvature. At a triple junction, this boundary meets the free surfaces of the two crystals, which move according to surface diffusion. The model is known to possess a unique travelling wave solution. We study the linearization about the wave, which necessarily includes a free boundary at the location of the triple junction. This makes the analysis more complex than that of standard travelling waves, and we discuss how existing theory applies in this context. Furthermore, we compute numerically the associated point spectrum by restricting the problem to a finite computational domain with appropriate physical boundary conditions. Numerical results strongly suggest that the two-dimensional wave is stable with respect to both two- and three-dimensional perturbations.  相似文献   

7.
The problem of long-wave scattering by piecewise-constant periodic topography is studied both for a linear solitary-like wave pulse, and for a weakly nonlinear solitary wave [Korteweg-de Vries (KdV) soliton]. If the characteristic length of the topographic irregularities is larger than the pulse length, the solution of the scattering problem is obtained analytically for a leading wave in the framework of linear shallow-water theory. The wave decrement in the case of the small height of the topographic irregularities is proportional to delta2, where delta is the relative height of the topographic obstacles. An analytical approximate solution is also obtained for the weakly nonlinear problem when the length of the irregularities is larger than the characteristic nonlinear length scale. In this case, the Korteweg-de Vries equation is solved for each piece of constant depth by using the inverse scattering technique; the solutions are matched at each step by using linear shallow-water theory. The weakly nonlinear solitary wave decays more significantly than the linear solitary pulse. Solitary wave dynamics above a random seabed is also discussed, and the results obtained for random topography (including experimental data) are in reasonable agreement with the calculations for piecewise topography.  相似文献   

8.
Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable and unstable pitch modes for the lower and higher activation energies, respectively. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of two modes. The maximum pressure history in the stable pitch remained nearly constant, and the single Mach leg existing on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the unstable pitch due to the generation and decay of complex Mach interaction on the shock front shape. The high-frequency oscillation was self-induced because the intensity of the transverse wave was changed during propagation in one cycle. The high-frequency behavior was not always the same for each cycle, and therefore the low frequency oscillation was also induced in the pressure history.  相似文献   

9.
A spiral wave front source generates a pressure field that has a phase that depends linearly on the azimuthal angle at which it is measured. This differs from a point source that has a phase that is constant with direction. The spiral wave front source has been developed for use in navigation; however, very little work has been done to model this source in an ocean environment. To this end, the spiral wave front analogue of the acoustic point source is developed and is shown to be related to the point source through a simple transformation. This makes it possible to transform the point source solution in a particular ocean environment into the solution for a spiral source in the same environment. Applications of this transformation are presented for a spiral source near the ocean surface and seafloor as well as for the more general case of propagation in a horizontally stratified waveguide.  相似文献   

10.
首先利用直接微扰方法,确定了孤立波的放大或衰减与孤立波的初始幅度以及介质的结构参数之间的关系.然后利用线性化技术构造出一种四阶精度的差分格式,并对孤立波在细观结构固体层中传播及不同幅度的孤立波的相互作用进行了数值模拟,从而得到在适当条件下细观结构固体层中孤立波传播时可以衰减、放大也可以稳定传播,且相互作用不影响它们这种传播特性.  相似文献   

11.
于明  刘全 《物理学报》2016,65(2):24702-024702
凝聚炸药爆轰在边界高声速材料约束下传播时,爆轰波会在约束材料界面上产生复杂的折射现象.本文针对凝聚炸药爆轰波在高声速材料界面上的折射现象展开理论和数值模拟分析.首先通过建立在爆轰ZND模型上的改进爆轰波极曲线理论给出爆轰波折射类型,然后发展一种求解爆轰反应流动方程的基于特征理论的二阶单元中心型Lagrange计算方法来数值模拟典型的爆轰波折射过程.从改进爆轰波极曲线理论和二阶Lagrange方法数值模拟给出的结果看出,凝聚炸药爆轰波在高声速材料界面上的折射类型有四种:反射冲击波的正规折射、带束缚前驱波的非正规折射、带双Mach反射的非正规折射、带λ波结构的非正规折射.  相似文献   

12.
An exact solution which describes the coalescence of two traveling fronts of the same sense into a front connecting two stable constant states is found in terms of the direct method for a simple nonlinear diffusion equation. Head-on collisions of two fronts of opposite sense are also examined numerically.  相似文献   

13.
The rise of bubbles in viscous liquids is not only a very common process in many industrial applications, but also an important fundamental problem in fluid physics. An improved numerical algorithm based on the front tracking method, originally proposed by Tryggvason and his co-workers, has been validated against experiments over a wide range of intermediate Reynolds and Bond numbers using an axisymmetric model [J. Hua, J. Lou, Numerical simulation of bubble rising in viscous liquid, J. Comput. Phys. 22 (2007) 769–795]. In the current paper, this numerical algorithm is further extended to simulate 3D bubbles rising in viscous liquids with high Reynolds and Bond numbers and with large density and viscosity ratios representative of the common air–water two-phase flow system. To facilitate the 3D front tracking simulation, mesh adaptation is implemented for both the front mesh on the bubble surface and the background mesh. On the latter mesh, the governing Navier–Stokes equations for incompressible, Newtonian flow are solved in a moving reference frame attached to the rising bubble. Specifically, the equations are solved using a finite volume scheme based on the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm, and it appears to be robust even for high Reynolds numbers and high density and viscosity ratios. The 3D bubble surface is tracked explicitly using an adaptive, unstructured triangular mesh. The numerical model is integrated with the software package PARAMESH, a block-based adaptive mesh refinement (AMR) tool developed for parallel computing. PARAMESH allows background mesh adaptation as well as the solution of the governing equations in parallel on a supercomputer. Further, Peskin distribution function is applied to interpolate the variable values between the front and the background meshes. Detailed sensitivity analysis about the numerical modeling algorithm has been performed. The current model has also been applied to simulate a number of cases of 3D gas bubbles rising in viscous liquids, e.g. air bubbles rising in water. Simulation results are compared with experimental observations both in aspect of terminal bubble shapes and terminal bubble velocities. In addition, we applied this model to simulate the interaction between two bubbles rising in a liquid, which illustrated the model’s capability in predicting the interaction dynamics of rising bubbles.  相似文献   

14.
Two semi-analytical approaches to solve the problem of light scattering on nanowire antennas are developed and compared. The derivation is based on the exact solution of the plane wave scattering problem in case of an infinite cylinder. The original three-dimensional problem is reduced in two alternative ways to a simple one-dimensional integral equation, which can be solved numerically by a method of moments approach. Scattering cross sections of gold nanowire antennas with different lengths and aspect ratios are analyzed for the optical and near-infrared spectral range. Comparison of the proposed semi-analytical methods with the numerically rigorous discrete dipole approximation method demonstrates good agreement as well as superior numerical performance.  相似文献   

15.
In this paper, the one-dimensional time-fractional diffusion-wave equation with the Caputo fractional derivative of order α, 1 ≤ α ≤ 2 and with constant coefficients is revisited. It is known that the diffusion and the wave equations behave quite differently regarding their response to a localized disturbance. Whereas the diffusion equation describes a process where a disturbance spreads infinitely fast, the propagation speed of the disturbance is a constant for the wave equation. We show that the time-fractional diffusion-wave equation interpolates between these two different responses and investigate the behavior of its fundamental solution for the signalling problem in detail. In particular, the maximum location, the maximum value, and the propagation velocity of the maximum point of the fundamental solution for the signalling problem are described analytically and calculated numerically.  相似文献   

16.
The observed nonclassical power-law dependence of the amplitude of the second harmonic wave on the amplitude of a harmonic pump wave is explained as a phenomenon associated with two types of nonlinearity in a structurally inhomogeneous medium. An approach to solving the inverse problem of determining the nonlinearity parameters and the exponent in the above-mentioned dependence is demonstrated. To describe the effects of strongly pronounced nonlinearity, equations containing a double nonlinearity and generalizing the Hopf and Burgers equations are proposed. The possibility of their exact linearization is demonstrated. The profiles, spectral composition, and average wave intensity in such doubly nonlinear media are calculated. The shape of the shock front is found, and its width is estimated. The wave energy losses that depend on both nonlinearity parameters—quadratic and modular—are calculated.  相似文献   

17.
In this paper we consider the problem of a charged harmonic oscillator under the influence of a constant magnetic field. The system is assumed to be isotropic and the magnetic field is applied along the z-axis. The canonical transformation is invoked to remove the interaction term and the system is reduced to a model containing the second harmonic generation. Two classes of the real and complex quadratic invariants (constants of motion) are obtained. We have employed the Lie algebraic technique to find the most general solution for the wave function for both real and complex invariants. Some discussions related to the advantage of using the quadratic invariants to solve the Cauchy problem instead of the direct use of the Hamiltonian itself are also given.  相似文献   

18.
Abstract

An iterative solution to the problem of scattering from a one-dimensional rough surface is obtained for the Dirichlet boundary condition. The advantages of this method are that bounds for convergence of the solution can be established and that the solution may readily be iterated to sufficiently high order in the interaction to examine the rate at which it converges. Absolute convergence of the iterative solution is also a sufficient condition for the convergence of the operator expansion method for surfaces on which the slope is everywhere less than unity. A numerical example of scattering from an echelette grating is considered, and bounds for convergence established. It is found that for scattering from such surfaces the rate at which the iterative solution converges decreases as the surface slope is increased. Corresponding results are found for the operator expansion method.  相似文献   

19.
卡尔曼滤波在激光跟踪测量系统中的应用   总被引:5,自引:0,他引:5  
激光跟踪测量系统对于测量运动目标空间位置是行之有效的,但在测量过程中,各种干扰噪声的影响会降低测量精度。采用卡尔曼滤波来减小噪声的影响以提高测量精度。介绍了激光跟踪测量系统,建立了状态方程和测量方程,给出了卡尔曼滤波算法,仿真结果表明,运用卡尔曼滤波大大提高了测量系统的精度。  相似文献   

20.
The applicability of the Dirichlet-to-Neumann technique coupled with finite difference methods is enhanced by extending it to multiple scattering from obstacles of arbitrary shape. The original boundary value problem (BVP) for the multiple scattering problem is reformulated as an interface BVP. A heterogenous medium with variable physical properties in the vicinity of the obstacles is considered. A rigorous proof of the equivalence between these two problems for smooth interfaces in two and three dimensions for any finite number of obstacles is given. The problem is written in terms of generalized curvilinear coordinates inside the computational region. Then, novel elliptic grids conforming to complex geometrical configurations of several two-dimensional obstacles are constructed and approximations of the scattered field supported by them are obtained. The numerical method developed is validated by comparing the approximate and exact far-field patterns for the scattering from two circular obstacles. In this case, for a second order finite difference scheme, a second order convergence of the numerical solution to the exact solution is easily verified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号