首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present a plane parallel radiative transfer model for polarized light, that provides the intensity vector as well as the derivatives of the four Stokes parameters with respect to atmospheric trace gas profiles. These derivatives are essential for retrieval of height resolved trace gas information from satellite measurements of backscattered sunlight. The model uses the Gauss-Seidel iteration technique for solving the radiative transfer equation. For the first time, the forward-adjoint radiative perturbation theory is applied for the linearization of a radiative transfer model including polarization. The accuracy of the model is better than 0.025% for all four Stokes parameters and better than 0.03% for the derivatives.  相似文献   

2.
ARTS is a modular program that simulates atmospheric radiative transfer. The paper describes ARTS version 1.0, which is applicable in the absence of scattering. An overview over all major parts of the model is given: calculation of absorption coefficients, the radiative transfer itself, and the calculation of Jacobians. ARTS can be freely used under a GNU general public license.Unique features of the program are its scalability and modularity, the ability to work with different sources of spectroscopic parameters, the availability of several self-consistent water continuum and line absorption models, and the analytical calculation of Jacobians.  相似文献   

3.
We present a general approach for the linearization of radiative transfer in a spherical planetary atmosphere. The approach is based on the forward-adjoint perturbation theory. In the first part we develop the theoretical background for a linearization of radiative transfer in spherical geometry. Using an operator formulation of radiative transfer allows one to derive the linearization principles in a universally valid notation. The application of the derived principles is demonstrated for a radiative transfer problem in simplified spherical geometry in the second part of this paper. Here, we calculate the derivatives of the radiance at the top of the atmosphere with respect to the absorption properties of a trace gas species in the case of a nadir-viewing satellite instrument.  相似文献   

4.
Three-dimensional steady-state radiative integral transfer equations (RITEs) for a cubic absorbing and isotropically scattering homogeneous medium are solved using the method of “subtraction of singularity”. Surface integrals and volume integrals are carried out analytically to eliminate singularities, to assure highly accurate solutions, and to reduce the computational time. The resulting system of linear equations for the incident energy is solved iteratively. Six benchmark problems for cold participating media subjected to various combinations of externally uniform/non-uniform diffuse radiation loads are considered. The solutions for the incident energy and the net heat flux components are given in tabular form for scattering albedos of ω=0, 0.5 and 1.  相似文献   

5.
We derive nonstandard layer-edge conditions for efficient solution of multislab atmospheric radiative transfer problems. We begin by defining a local radiative transfer problem on the lowermost layer of a multislab model atmosphere and we consider a standard discrete ordinates version of this local problem. We then make use of a recently developed computational method in order to derive layer-edge conditions involving incident, reflected and transmitted radiation. These layer-edge conditions for the lowermost layer are given in terms of inherent optical properties of the layer, the solar zenith angle and the quadrature set used in the discrete ordinates approach. They can be used to increase the efficiency of our computational method in solving practical problems in atmospheric radiative transfer. Moreover, they are amenable to incorporation into other discrete ordinates methods. To illustrate, we report numerical results for two atmospheric model problems.  相似文献   

6.
The differential operator of polarized radiative transfer equation is examined in case of homogeneous medium in Euclidean three-dimensional space with arbitrary curvilinear coordinate system defined in it. This study shows that an apparent rotation of polarization plane along the light ray with respect to the chosen reference plane for Stokes parameters generally takes place, due to purely geometric reasons. Analytic expressions for the differential operator of transfer equation dependent on the components of metric tensor and their derivatives are found, and the derivation of differential operator of polarized radiative transfer equation has been made a standard procedure. Considerable simplifications take place if the coordinate system is orthogonal.  相似文献   

7.
A spectral element method (SEM) is developed to solve polarized radiative transfer in multidimensional participating medium. The angular discretization is based on the discrete-ordinates approach, and the spatial discretization is conducted by spectral element approach. Chebyshev polynomial is used to build basis function on each element. Four various test problems are taken as examples to verify the performance of the SEM. The effectiveness of the SEM is demonstrated. The h and the p convergence characteristics of the SEM are studied. The convergence rate of p-refinement follows the exponential decay trend and is superior to that of h-refinement. The accuracy and efficiency of the higher order approximation in the SEM is well demonstrated for the solution of the VRTE. The predicted angular distribution of brightness temperature and Stokes vector by the SEM agree very well with the benchmark solutions in references. Numerical results show that the SEM is accurate, flexible and effective to solve multidimensional polarized radiative transfer problems.  相似文献   

8.
The finite element method is applied to the solution of the two-dimensional atmospheric radiative transfer. The analysis is mainly focussed on the derivation of the cell or element equation. The Galerkin method and several hybrid methods using the integral and finite difference form of the radiative transfer equation are employed to obtain the cell equation. The assembled system of equations relating the radiances at the lower and upper boundary of the domain is solved by a direct method.  相似文献   

9.
In graded index media, the ray goes along a curved path determined by Fermat principle. Generally, the curved ray trajectory in graded index media is a complex implicit function, and the curved ray tracing is very difficult and complex. Only for some special refractive index distributions, the curved ray trajectory can be expressed as a simple explicit function. Two important examples are the layered and the radial graded index distributions. In this paper, the radiative heat transfer problems in two-dimensional square semitransparent with layered and radial graded index distributions are analyzed. After deduction of the ray trajectory, the radiative heat transfer problems are solved by using the Monte Carlo curved ray-tracing method. Some numerical solutions of dimensionless net radiative heat flux and medium temperature are tabulated as the benchmark solutions for the future development of approximation techniques for multi-dimensional radiative heat transfer in graded index media.  相似文献   

10.
11.
12.
Light transport in graded index media follows a curved trajectory determined by Fermat's principle. Besides the effect of variation of the refractive index on the transport of radiative intensity, the curved ray trajectory will induce geometrical effects on the transport of polarization ellipse. This paper presents a complete derivation of vector radiative transfer equation for polarized radiation transport in absorption, emission and scattering graded index media. The derivation is based on the analysis of the conserved quantities for polarized light transport along curved trajectory and a novel approach. The obtained transfer equation can be considered as a generalization of the classic vector radiative transfer equation that is only valid for uniform refractive index media. Several variant forms of the transport equation are also presented, which include the form for Stokes parameters defined with a fixed reference and the Eulerian forms in the ray coordinate and in several common orthogonal coordinate systems.  相似文献   

13.
<正>A new method of multi-coupled single scattering(MCSS) for solving a vector radiative transfer equation is developed and made public on Internet.Recent solutions from Chandrasekhar’s X-Y method is used to validate the MCSS’s result,which shows high precision.The MCSS method is theoretically simple and clear,so it can be easily and credibly extended to the simulation of aerosol/cloud atmosphere’s radiative properties,which provides effective support for research into polarized remote sensing.  相似文献   

14.
段民征  郭霞 《物理学报》2009,58(2):1353-1357
当太阳入射角度和观测角都趋向于水平时,由平面平行大气辐射传输方程计算得到的大气顶的反射辐射值不唯一,其值依赖于太阳和观测角的趋近于水平方向的路径曲线,即从数学角度称为出现极限的不唯一或极限不连续.事实上这违背了辐射场物理原理,这种不连续是由于常规算法中忽略了大气辐射传输中一个隐含的物理原理而导出的.在极限条件下必须引入满足Snell光学定律的界面边界条件,否则会导致错误的结论. 关键词: 辐射传输 局地热力学平衡 大气光学 Snell定律  相似文献   

15.
胡帅  高太长  李浩  刘磊  程天际  张婷 《物理学报》2015,64(18):184203-184203
折射是影响辐射传输的重要因素. 为分析大气折射对辐射传输的影响, 基于Monte Carlo方法, 给出了考虑大气折射的矢量辐射传输模型, 实现了均匀气层和耦合面处光子随机运动过程的模拟, 实现了直射光及漫射光Stokes矢量、偏振度和辐射通量等参数的计算. 在考虑和不考虑大气折射两种条件下, 验证了模型的准确性; 在纯瑞利散射条件下, 讨论了大气折射对不同方向漫射光Stokes矢量的影响; 在不同太阳天顶角、大气廓线、气溶胶及含云大气条件下, 分析了大气折射对辐射传输过程的影响. 结果表明: 大气折射对漫射光Stokes矢量的影响主要体现在天顶角70°–110°区间, 且随着太阳入射角增大, 其影响更为显著; 不同大气廓线情形下, 大气折射对Stokes矢量的影响不一致, 其原因是不同大气廓线对应的折射率廓线存在差异. 含云及含气溶胶大气条件下, 大气折射对辐射传输的影响变弱, 沙尘型及海盐型气溶胶条件下, 折射对辐射传输的影响强于可溶型气溶胶情形; 不同形状气溶胶条件下, 大气折射对辐射传输的影响也存在显著差异; 不同云高条件下, 大气折射对漫射光Stokes矢量的影响无显著差异, 但随着云光学厚度增大, 大气折射的影响减弱.  相似文献   

16.
In this paper, a reverse electric field Monte Carlo (REMC) method is proposed to study the vector radiation transfer in the atmosphere. The REMC is based on tracing the multiply scattered electric field to simulate the vector transmitted radiance. The reflected intensities with different total optical depth values are obtained, which accord well with the results in the previous research. Stokes vector and the degree of polarization are numerically investigated. The simulation result shows that when the solar zenith angle is determined, the zenith angle of detector has two points, of which the degree of polarization does not change with the ground albedo and the optical depth. The two points change regularly with the solar zenith angle. Moreover, our REMC method can be applied to the vector radiative transfer in the atmosphere-ocean system.  相似文献   

17.
18.
The normal-mode-expansion technique is used to establish the solution of the Milne problem basic to a generalized equation of radiative transfer. The non-gray model used includes the effects of absorption, scattering and losses due to photo-electric ionizations and collisions of the second kind. Accurate numerical results are presented for such physical quantities as the extrapolation distance, the integrated Planck function and the angular distribution of the exit intensity for selected values of the basic parameters.  相似文献   

19.
20.
Xu F  Davis AB  West RA  Martonchik JV  Diner DJ 《Optics letters》2011,36(11):2083-2085
We report on a way of building bidirectional surface reflectivity into the Markov chain formalism for polarized radiative transfer through a vertically inhomogeneous atmosphere. Numerical results are compared to those obtained by the Monte Carlo method, showing the accuracy of the Markov chain method when 90 streams are used to compute the radiation from a Rayleigh-plus-aerosol atmosphere that overlies a surface with a bidirectional reflection function consisting of both depolarizing and polarizing parts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号