首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new set of values for the heat capacity of aqueous mixtures of piperazine (PZ) and n-methyldiethanolamine (MDEA) at different concentrations and temperatures are reported in this paper. The differential scanning calorimetry technique was used to measure the property over the range T = 303.2 K to T = 353.2 K for mixtures containing 0.60 to 0.90 mole fraction water with 15 different concentrations of the system (PZ + MDEA + H2O). Heat capacity for four concentrations of the binary system (PZ + MDEA) was also measured. A Redlich–Kister-type equation was adopted to estimate the excess molar heat capacity, which was used to predict the value of the molar heat capacity at a particular concentration and temperature, which would then be compared against the measured value. A total of 165 data points fit into the model resulted in a low overall average absolute deviation of 4.6% and 0.3% for the excess molar heat capacity and molar heat capacity, respectively. Thus, the results presented here are of acceptable accuracy for use in engineering process design.  相似文献   

2.
(Liquid + liquid) equilibrium tie-lines were measured for one ternary system {x1H2O + x2(CH3)2CHOH + (1  x1  x2)CH3C(CH3)2OCH3} and one quaternary system {x1H2O + x2(CH3)2CHOH + x3CH3C(CH3)2OCH3 + (1  x1  x2  x3)(CH3)2CHOCH(CH3)2} at T = 298.15 K and P = 101.3 kPa. The experimental (liquid + liquid) equilibrium results were satisfactorily correlated by modified and extended UNIQUAC models both with ternary and quaternary parameters in addition to binary ones.  相似文献   

3.
Density ρ, viscosity η, and refractive index nD, values for (tetradecane + benzene, + toluene, + chlorobenzene, + bromobenzene, + anisole) binary mixtures over the entire range of mole fraction have been measured at temperatures (298.15, 303.15, and 308.15) K at atmospheric pressure. The speed of sound u has been measured at T = 298.15 K only. Using these data, excess molar volume VE, deviations in viscosity Δη, Lorentz–Lorenz molar refraction ΔR, speed of sound Δu, and isentropic compressibility Δks have been calculated. These results have been fitted to the Redlich and Kister polynomial equation to estimate the binary interaction parameters and standard deviations. Excess molar volumes have exhibited both positive and negative trends in many mixtures, depending upon the nature of the second component of the mixture. For the (tetradecane + chlorobenzene) binary mixture, an incipient inversion has been observed. Calculated thermodynamic quantities have been discussed in terms of intermolecular interactions between mixing components.  相似文献   

4.
Excess molar enthalpies, measured at the temperature 298.15 K and atmospheric pressure conditions by means of a flow microcalorimeter, are reported for the ternary mixtures {x1(dibutyl ether or dipropyl ether) + x2 2,2-dimethylbutane + (1 ? x1 ? x2) 2,3-dimethylbutane}. A smooth representation of the results is described and the constant-enthalpy contours for each ternary system are displayed on the respective Roozeboom diagrams. The results serve to show that good estimates of the excess molar enthalpies of the ternary systems can be obtained from the Liebermann–Fried model by using the physical properties of the constituent pure components and the parameters determined from the binary mixtures of these components.  相似文献   

5.
In this work, a new set of values for the solubility of carbon dioxide in aqueous mixture containing different concentrations of 2-amino-2-methyl-1-propanol (AMP), a sterically-hindered amine, and piperazine (PZ), an activator, are presented. The results were carefully determined using a 1.0 dm3 stainless steel vapour-recirculation equilibrium cell at T = (313.2, 333.2, and 353.2) K, and pressures up to 152 kPa. The AMP concentrations in the ternary (solvent) mixture were (2 and 3) kmol · m?3; those of PZ’s were (0.5, 1.0, and 1.5) kmol · m?3. The measured equilibrium loading (solubility)/partial pressure pairs at different temperatures and concentration levels were generally consistent with the corresponding values correlated from the Kent–Eisenberg model that has been adapted for the system in the study, where the parameters of the models were determined using the results from this study and relevant data from literature.  相似文献   

6.
The experimental densities for the binary or ternary systems were determined at T = (298.15, 303.15, and 313.15) K. The ionic liquid methyl trioctylammonium bis(trifluoromethylsulfonyl)imide ([MOA]+[Tf2N]) was used for three of the five binary systems studied. The binary systems were ([MOA]+[Tf2N] + 2-propanol or 1-butanol or 2-butanol) and (1-butanol or 2-butanol + ethyl acetate). The ternary systems were {methyl trioctylammonium bis(trifluoromethylsulfonyl)imide + 2-propanol or 1-butanol or 2-butanol + ethyl acetate}. The binary and ternary excess molar volumes for the above systems were calculated from the experimental density values for each temperature. The Redlich–Kister smoothing polynomial was fitted to the binary excess molar volume data. Virial-Based Mixing Rules were used to correlate the binary excess molar volume data. The binary excess molar volume results showed both negative and positive values over the entire composition range for all the temperatures.The ternary excess molar volume data were successfully correlated with the Cibulka equation using the Redlich–Kister binary parameters.  相似文献   

7.
A flow mixing calorimeter and a vibrating-tube densimeter have been used to measure excess molar enthalpies HmE and excess molar volumes VmE of {xC2H6 +  (1   x)SF6 }. Measurements over a range of mole fractions x have been made at T =  305.65 K and T =  312.15 K and at the pressures (3.76, 4.32, 4.88 and 6.0) MPa. The pressure 3.76 MPa is close to the critical pressure of SF6, the pressure 4.88 MPa is close to the critical pressure of C2H6, and the pressure 4.32 MPa is midway between these values. The measurements are compared with the Patel–Teja equation of state which reproduces the main features of the excess function curves as well as it does for similar measurements on {xCO2 +  (1   x)C2H6 }, {xCO2 +  (1   x)C2H4 } and {xCO2 +  (1   x)SF6 }.  相似文献   

8.
Isothermal (vapour + liquid) equilibria (VLE) at 313.15 K have been measured for liquid 1-propanol + dibromomethane, or + bromochloromethane or + 1,2-dichloroethane or + 1-bromo-2-chloroethane mixtures.The VLE data were reduced using the Redlich–Kister equation taking into consideration the vapour phase imperfection in terms of the 2nd molar virial coefficients. The excess molar Gibbs free energies of all the studied mixtures are positive and ranging from 794 J · mol−1 for (1-propanol + bromochloromethane) and 1052 J · mol−1 for (1-propanol + 1-bromo-2-chloroethane), at x = 0.5. The experimental results are compared with modified UNIFAC predictions.  相似文献   

9.
The thermodynamic properties ofZn5(OH)6(CO3)2 , hydrozincite, have been determined by performing solubility and d.s.c. measurements. The solubility constant in aqueous NaClO4media has been measured at temperatures ranging from 288.15 K to 338.15 K at constant ionic strength (I =  1.00 mol · kg  1). Additionally, the dependence of the solubility constant on the ionic strength has been investigated up to I =  3.00 mol · kg  1NaClO4at T =  298.15 K. The standard molar heat capacity Cp, mofunction fromT =  318.15 K to T =  418.15 K, as well as the heat of decomposition of hydrozincite, have been obtained from d.s.c. measurements. All experimental results have been simultaneously evaluated by means of the optimization routine of ChemSage yielding an internally consistent set of thermodynamic data (T =  298.15 K): solubility constant log * Kps 00 =  (9.0  ±  0.1), standard molar Gibbs energy of formationΔfGmo {Zn5(OH)6(CO3)2 }  =  (  3164.6  ±  3.0)kJ · mol  1, standard molar enthalpy of formation ΔfHmo{Zn5(OH)6(CO3)2 }  =  (  3584  ±  15)kJ · mol  1, standard molar entropy Smo{Zn5(OH)6(CO3)2 }  =  (436  ±  50)J · mol  1· K  1and Cp,mo / (J · mol  1· K  1)  =  (119  ±  11)  +  (0.834  ±  0.033)T / K. A three-dimensional predominance diagram is introduced which allows a comprehensive thermodynamic interpretation of phase relations in(Zn2 +  +  H2O  +  CO2) . The axes of this phase diagram correspond to the potential quantities: temperature, partial pressure of carbon dioxide and pH of the aqueous solution. Moreover, it is shown how the stoichiometric composition{n(CO3) / n(Zn)} of the solid compoundsZnCO3 and Zn5(OH)6(CO3)2can be checked by thermodynamically analysing the measured solubility data.  相似文献   

10.
A flow mixing calorimeter followed by a vibrating-tube densimeter has been used to measure excess molar enthalpies HmE and excess molar volumesVmE of {xC3H8 +  (1   x)SF6}. Measurements over a range of mole fractionsx have been made at the pressure p =  4.30 MPa at eight temperatures in the rangeT =  314.56 K to 373.91 K, in the liquid region at p =  3.75 MPa andT =  314.56 K, in the two phase region at p =  3.91 MPa andT =  328.18 K, and in the supercritical region at p =  5.0 MPa andT =  373.95 K. The measurements are compared with results from the Patel–Teja equation of state which reproduces the main features of the excess function curves as well as it does for similar measurements on{xCO2 +  (1   x)C2H6} ,{xCO2 +  (1   x)C2H4} and{xCO2 +  (1   x)SF6} reported previously.  相似文献   

11.
Density, viscosity, refractive index, and heat of mixing measurements for {x1 1-butanol + (1 ? x1) 2-butanone} at T = 303 K were made over the whole concentration range. Data of the binary mixture were further used to calculate the viscosity and refractive index deviations, and excess molar enthalpy. The excess or deviation properties were fitted with the Redlich–Kister polynomial relation to obtain their coefficients and standard deviations. The construction of an adiabatic calorimeter useful in the neighbourhood of room temperature is described. Its performance was checked by measuring the heat of mixing for {x1 benzene + (1 ? x1) cyclohexane} over the whole concentration range at T = 298 K. Experimental results are within a standard deviation of 9 J · mol?1 of the accepted literature values.  相似文献   

12.
A complete critical evaluation of all available phase diagram and thermodynamic data has been performed for all condensed phases of the (NaCl + KCl + MgCl2 + CaCl2 + MnCl2 + FeCl2 + CoCl2 + NiCl2) system, and optimized model parameters have been found. The (MgCl2 + CaCl2 + MnCl2 + FeCl2 + CoCl2 + NiCl2) subsystem has been critically evaluated in a previous article. The model parameters obtained for the binary subsystems can be used to predict thermodynamic properties and phase equilibria for the multicomponent system. The Modified Quasichemical Model was used for the molten salt phase, and the (MgCl2 + MnCl2 + FeCl2 + CoCl2 + NiCl2) solid solution was modeled using a cationic substitutional model with an ideal entropy and an excess Gibbs free energy expressed as a polynomial in the component mole fractions. Finally, the (Na,K)(Mg,Ca,Mn,Fe,Co,Ni)Cl3 and the (Na,K)2(Mg,Mn,Fe,Co,Ni)Cl4 solid solutions were modeled using the Compound Energy Formalism.  相似文献   

13.
Excess enthalpies and excess heat capacities of { x 2-butanone  +  (1   x)1,4-dioxane}, and { x cyclohexanone, or 2-butanone, or 1,4-dioxane  +  (1   x)1,2-dimethoxyethane} were measured atT =  298.15 K. Excess enthalpies were negative for { x 2-butanone  +  (1   x)1,2-dimethoxyethane}, and negative with a small positive part in the region ofx >  0.8 for { x cyclohexanone  +  (1   x)1,2-dimethoxyethane}, whereas excess enthalpies of { x 2-butanone  +  (1   x)1,4-dioxane} were positive as for { x cyclohexanone  +  (1   x)1,4-dioxane} previously reported. Excess enthalpies of {x 1,4-dioxane  +  (1   x)1,2-dimethoxyethane} were positive. The results were compared with the systems reported earlier. Excess heat capacities are positive for { x 2-butanone  +  (1   x)1,2-dimethoxyethane} and { x cyclohexanone  +  (1   x)1,2-dimethoxyethane}, and negative for { x 2-butanone  +  (1   x)1,4-dioxane} and { x 1,4-dioxane  +  (1   x)1,2-dimethoxyethane}. The last mixture shows a W-shaped curve of excess heat capacity.  相似文献   

14.
Excess molar enthalpies, measured at the temperature 298.15 K in a flow microcalorimeter, are reported for the ternary mixtures {x1CH3CH2OC(CH3)3 + x2CH3(CH2)4CH3 + (1   x1  x2)CH3(CH2)5CH3} and {x1CH3CH2OC(CH3)3 + x2CH3(CH2)4CH3 + (1   x1  x2)CH3(CH2)6CH3}. Smooth representations of the results are described and used to construct constant-enthalpy contours on Roozeboom diagrams. It is shown that useful estimates of the enthalpies of the ternary mixtures can be obtained from the Liebermann and Fried model, using only the physical properties of the components and their binary mixtures.  相似文献   

15.
The excess molar volumes VmE at T=298.15 have been determined in the whole composition domain for (2-methoxyethanol + tetrahydrofuran + cyclohexane) and for the parent binary mixtures. Data on VmE are also reported for (2-ethoxyethanol + cyclohexane). All binaries showed positive VmE values, small for (methoxyethanol + tetrahydrofuran) and large for the other ones. The ternary VmE surface is always positive and exhibits a smooth trend with a maximum corresponding to the binary (2-methoxyethanol + cyclohexane). The capabilities of various models of either predicting or reproducing the ternary data have been compared. The behaviour of VmE and of the excess apparent molar volume of the components is discussed in both binary and ternary mixtures. The results suggest that hydrogen bonding decreases with alcohol dilution and increases with the tetrahydrofuran content in the ternary solutions.  相似文献   

16.
The solubility of the binary system (LiNO3 + H2O) from T = 273.15 K to T = 333.15 K and solubility isotherms of the ternary system (LiCl + LiNO3 + H2O) were elaborately measured at T = 273.15 K and T = 323.15 K. These solubility data, as well as water activities in the binary systems from the literature, were treated by an empirically modified BET model. The isotherms of the ternary system (LiCl + LiNO3 + H2O) were reproduced and a complete phase diagram of the ternary system in the temperature range from 273.15 K to 323.15 K predicted. It is shown that the solubility data for the binary system (LiNO3 + H2O) measured in this work are slightly different from the literature data. Simulated results showed that the saturated salt solution of (2.8LiCl + LiNO3) is in equilibrium with the stable solid phase LiNO3(s) over the temperature range from 283.15 K to 323.15 K, other than the solid phases LiNO3 · 3H2O(s) and LiClH2O(s) as reported by Iyoki et al. [S. Iwasaki, Y. Kuriyama. T. Uemura, J. Chem. Eng. Data 38 (1993) 396–398].  相似文献   

17.
Total vapour pressures and excess molar volumes, measured at the temperature 313.15 K, are reported for three binary mixtures (2-pyrrolidone + water), (2-pyrrolidone + methanol) and (2-pyrrolidone + ethanol). The results are compared with previously obtained data for binary mixtures (amide + A), where amide=N-methylformamide, N,N-dimethylformamide and N-methylacetamide, and A= water, methanol, and ethanol.  相似文献   

18.
Microcalorimetric measurements of excess enthalpies at the temperature T = 298.15 K are reported for the two ternary mixtures {x1(C4H8O or C5H10O) + x2C5H12O + x3C8H18}. Smooth representations of the results are presented and used to construct constant excess molar enthalpy contours on Roozeboom diagrams. It is shown that good estimates of the ternary enthalpies can be obtained from the Liebermann and Fried model, using only the physical properties of the components and their binary mixtures.  相似文献   

19.
The (solid + liquid) phase equilibrium for eight {x diphenyl ether + (1  x) biphenyl} binary mixtures, including the eutectic mixture were studied by using a differential scanning calorimetry (DSC) technique. A good agreement was found between previous literature and experimental values here presented for the melting point and enthalpy of fusion of pure compounds. The well-known equations for Wilson and the non-random two-liquid (NRTL) were used to correlate experimental solid liquid phase equilibrium data. Moreover, the predictive mixture model UNIFAC has been employed to describe the phase diagram. With the aim to check this equipment to measure heat capacities in the quasi-isothermal Temperature-Modulated Differential Scanning Calorimetry method (TMDSC), four fluids of well-known heat capacity such as toluene, n-decane, cyclohexane and water were also studied in the liquid phase at temperatures ranging from (273.15 to 373.15) K. A good agreement with literature values was found for those fluids of pure diphenyl ether and biphenyl. Additionally, the specific isobaric heat capacities of diphenyl ether and biphenyl binary mixtures in the liquid phase up to T = 373.15 K were measured.  相似文献   

20.
Experimental values of density, refractive index and speed of sound of (hexane  +  cyclohexane  +  1-butanol) were measured at T =  298.15 K and atmospheric pressure. From the experimental data, the corresponding derived properties (excess molar volumes, changes of refractive index on mixing and changes of isentropic compressibility) were computed. Such derived values were correlated using several polynomial equations. Several empirical methods were used in the calculation of the properties of ternary systems from binary data. The Nitta–Chao group contribution model was applied to predict excess molar volume for this mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号