首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When the quasi-static problem is defined by a set of differential equations complemented by initial and boundary conditions, the resulting quasi-static solutions may exhibit a limited reach over the time domain. On the other hand, the infinity of equilibrium paths that can be obtained in a general non-linear problem also indicates that a proper definition of the quasi-static solution must be provided. In inelasticity problems, this infinite number of equilibrium paths occur even when no dissipative bifurcations are present. In the present paper, a general solution for quasi-static problems in Solid Mechanics is defined and explored. Special attention is addressed to material non-linearities though geometric non-linearities are also covered by the definition. Earlier concepts of path and state stability are recovered in order to reduce the number of solutions to those that are physically acceptable. The important link with the original dynamic problem is accounted for by enforcing a preferential load direction. The resulting definition relies on a time-objective criterion with straightforward applicability to the most common numerical models. In the final part of the paper, simple 1D problems are used to illustrate some of the concepts introduced in the present developments.  相似文献   

2.
This work deals with the thermodynamic formulation of constitutive models for materials whose quasi-static behaviour is governed by internal friction, e.g., dry granular materials. The process of internal friction is represented here phenomenologically with the help of a second-order, symmetric-tensor-valued internal variable. A general class of models for the evolution of this variable is considered, including as special cases a hypoelastic-like form for this relation as well as the hypoplastic form of Kolymbas (1991). The thermodynamic formulation is carried out in the context of the Müller-Liu entropy principle. Among other things, it is shown that for the hypoelastic-type models, a true equilibrium inelastic Cauchy stress exists. On the other hand, such a stress does not exist for the hypoplastic model due to its rate-independence and incremental non-linearity. With the help of a slight generalization of the notion of thermodynamic equilibrium, i.e., to thermodynamic “quasi-equilibrium,” however, such a Cauchy stress can be formulated for the hypoplastic model. As it turns out, this quasi-equilibrium for the Cauchy stress represents a thermodynamic generalization of the so-called quasi-static stress postulated for example by Goddard (1986) in the context of his viscoplastic model for a frictional-dissipative, and in particular for granular, materials. Received January 22, 1999  相似文献   

3.
The problem of finding the plane supporting curve (brachistochrone) along which a heavy particle released from rest at the given starting point slides with dry (Coulomb) friction and reaches the given destination point in least time, is stated as a variational isoperimetrical problem. The finite parametric equations of the extremal curve are obtained. This curve is the sought-for brachistochrone if the solution of the problem exists. Several numerical examples are given.  相似文献   

4.
Regimes of frictional sliding of a spring-block system   总被引:1,自引:0,他引:1  
In the context of rate-and-state friction, we revisit the crossover between the creep and inertial regimes in the dynamics of a spring-block system as observed and described in the dry friction experiment of Heslot et al. (1994) and Baumberger et al. (1994). We show that the transition between the quasi-static motion of a spring-block and its dynamic motion occurs at a lower sliding velocity than that which minimises the steady-state friction coefficient. We perform a weakly nonlinear stability analysis combined with numerical studies with the continuation package Auto. In particular, attention is focused on the change of nature the Hopf bifurcation from supercritical to subcritical, as observed by Heslot et al. Comparing the results obtained for different friction laws, we conclude that the weakly nonlinear analysis provides a possible criterion for distinguishing which friction laws may be physically relevant.  相似文献   

5.
In this work, solution methods for frictional contact problems are extended to the case of moving punches and to the external loading history-dependent system states. To solve the frictional contact problems in the contact area, an iterative method is developed and implemented. Solutions of two-dimensional problems are constructed using the boundary element method. Numerical analysis is aimed at the quantitative study of effects such as the interaction of contact pressure and friction forces, estimates of the friction force differences due to the differences in the choice of local basis for the calculation of normal pressure and friction forces, and evaluation of the effects of complex loading (rotation of the rigid punch after its preliminary penetration into the solid). We find that, for the same definition of the friction force, different initial approximations lead to the same solution. At the same time, the friction forces defined either as projections onto the common tangent plane or as projections onto the plane tangent to the punch can differ quite substantially. Similar conclusions are derived for the solutions corresponding to single or multiple loading steps. The work relies on the variational principle for the solution of contact problems and numerical algorithms developed for the problems with one-sided constraints. The variational principle was first applied by Signorini [1] to the determination of the stress-strain state in a linearly deformed body in a rigid smooth shell. The modern view of the problem and its generalizations to the frictional problems and some other problems involving unilateral constraints in given in the monograph [2]. Finite difference and finite element methods in application to the problems with unilateral constraints are described in [3]. Analytical solution methods are developed in the monographs [4–6].  相似文献   

6.
In automotive components, the cumulative microslip phenomenon is often observed for engine assemblies. This phenomenon results in an accumulation of the relative slips in a preferred tangential direction on the contact interface of two solids under cyclic loadings. A significant relative displacement may occur and leads to the assembly failure. In particular, a global rotation of the bearing shell may result from this mechanism of cumulated slips in conrod big end systems. To discuss this rotation problem, a model of two circular beams in frictional contact and submitted to a periodical rotating load is considered here. The aim is to give some simplified estimates of the critical rotation load based on a slip-shakedown analysis. The discussion holds for Tresca friction and can be extended to Coulomb friction under the assumption of small coupling. The static and kinematic slip-shakedown approaches are discussed. The obtained analytical results are shown to be in agreement with the finite element computations.  相似文献   

7.
Tonazzi  D.  Passafiume  M.  Papangelo  A.  Hoffmann  N.  Massi  F. 《Nonlinear dynamics》2020,102(3):1361-1374

Unstable friction-induced vibrations are considered an annoying problem in several fields of engineering. Although several theoretical analyses have suggested that friction-excited dynamical systems may experience sub-critical bifurcations, and show multiple coexisting stable solutions, these phenomena need to be proved experimentally and on continuous systems. The present work aims to partially fill this gap. The dynamical response of a continuous system subjected to frictional excitation is investigated. The frictional system is constituted of a 3D printed oscillator, obtained by additive manufacturing that slides against a disc rotating at a prescribed velocity. Both a finite element model and an experimental setup has been developed. It is shown both numerically and experimentally that in a certain range of the imposed sliding velocity the oscillator has two stable states, i.e. steady sliding and stick–slip oscillations. Furthermore, it is possible to jump from one state to the other by introducing an external perturbation. A parametric analysis is also presented, with respect to the main parameters influencing the nonlinear dynamic response, to determine the interval of sliding velocity where the oscillator presents the two stable solutions, i.e. steady sliding and stick–slip limit cycle.

  相似文献   

8.
This paper presents an experimental investigation of the dynamic behaviour of a single-degree-of-freedom (SDoF) system with a metal-to-metal contact under harmonic base or joined base-wall excitation. The experimental results are compared with those yielded by mathematical models based on a SDoF system with Coulomb damping. While previous experiments on friction-damped systems focused on the characterisation of the friction force, the proposed approach investigates the steady response of a SDoF system when different exciting frequencies and friction forces are applied. The experimental set-up consists of a single-storey building, where harmonic excitation is imposed on a base plate and a friction contact is achieved between a steel top plate and a brass disc. The experimental results are expressed in terms of displacement transmissibility, phase angle and top plate motion in the time and frequency domains. Both continuous and stick-slip motions are investigated. The main results achieved in this paper are: (1) the development of an experimental set-up capable of reproducing friction damping effects on a harmonically excited SDoF system; (2) the validation of the analytical model introduced by Marino et al. (Nonlinear Dyn, 2019. https://doi.org/10.1007/s11071-019-04983-x) and, particularly, the inversion of the transmissibility curves in the joined base-wall motion case; (3) the systematic observation of stick-slip phenomena and their validation with numerical results.  相似文献   

9.
In this paper, an analytical solution for the problem of finding profiles of gravity flow discharge chutes required to achieve maximum exit velocity under Coulomb friction is obtained by application of variational calculus. The model of a particle which moves down a rough curve in a uniform gravitational field is used to obtain a solution of the problem for various boundary conditions. The projection sign of the normal reaction force of the rough curve onto the normal to the curve and the restriction requiring that the tangential acceleration be non-negative are introduced as the additional constraints in the form of inequalities. These inequalities are transformed into equalities by introducing new state variables. Although this is fundamentally a constrained variational problem, by further introducing a new functional with an expanded set of unknown functions, it is transformed into an unconstrained problem where broken extremals appear. The obtained equations of the chute profiles contain a certain number of unknown constants which are determined from a corresponding system of nonlinear algebraic equations. The obtained results are compared with the known results from the literature.  相似文献   

10.
11.
Sui  Xin  Ding  Qian 《Nonlinear dynamics》2018,91(3):1619-1626
In this paper, we establish a new nonlinear equation which is called the two-mode Korteweg–de Vries–Burgers equation (TMKdV–BE). The new equation describes the propagation of two different wave modes simultaneously. First, we introduce a new Cole–Hopf transformation needed for the modified simplified bilinear method to find necessary conditions on the solution of TMKdV–BE. Also, a finite series in terms of tanh–coth function is presented as an alternative method to study the solution of the equation. Finally, the reliability of the obtained results is discussed in the last section.  相似文献   

12.
13.
应用功的互等定理推导了平面问题的不连续位移基本解,指出了开尔文解中的某些应力分量对应于不连续位移基本解中的某些位移分量的规律。  相似文献   

14.
Frictional sliding on a crack with non-uniform frictional characteristics is considered. The present work continues the investigation of Gorbatikh et al. [Int. J. Solids Struct., in press] and focuses on the cyclic loading. The evolution of the sliding process in loading–reloading–unloading cycles is analyzed. We also extend the analysis to the important case when the frictional resistance changes in the process of sliding (such changes may model “degradation” of the sliding surface during sliding, as well as other physical factors, not necessarily related to the sliding itself).  相似文献   

15.
We analyze the dynamics of a two-dimensional system constituted by two masses subjected to elastic, gravitational and viscous forces and constrained by a moving frictional mono-lateral surface. The model exhibits a time-varying dynamics capable of reproducing the hopping phenomenon, an unwanted phenomenon observed in many applications such as the motion of a robotic arm on a surface or that of a wiper on a windscreen. The system dynamics, besides being affected by geometrical non-linearities, has a non-smooth nature due to the impact and friction laws involved in the model. The complexity of the resulting equations and of the transition conditions require the problem to be solved numerically. Various periodic motions are found and the effect of varying the system parameters, in particular the friction coefficient, is investigated. Finally, simulations are used to gain some insight the behavior of the windscreen wiper.  相似文献   

16.
Laminar forced convection flow of a liquid in the fully developed region of a circular duct with isothermal wall is analyzed. The effects of viscous dissipation as well as of temperature dependent viscosity are taken into account. The coupled momentum and energy equations are solved analytically by means of a power series method. Then, reference is made to the Poiseuille model for the temperature change of viscosity. For a fixed value of the axial pressure gradient along the duct, dual solutions are found for the velocity and temperature fields. Although dual solutions correspond to the same value of the axial pressure gradient, they lead in general to different values of the average fluid velocity, of the average fluid temperature and of the wall heat flux. It is shown that, for a given fluid and for a fixed duct radius, the absolute value of the axial pressure gradient has an upper bound above which no steady laminar solution can exist.  相似文献   

17.
Restrictions on the quasi-static extension, or healing, of Griffith cracks are developed in the framework of irreversible thermodynamics. It is emphasized that thermodynamics requires that (G ? 2γ)ι ? 0, where ι is crack speed, G the Irwin energy release rate, and 2γ the work of reversible separation of the surfaces to be fractured. Implications for ‘lattice trapping’ models of cracks and for thermally-activated crack motion are discussed, as are the effects on crack growth and healing of a surface-reactive environment, in which case γ must be given a definition appropriate to adsorption-altered surface properties.  相似文献   

18.
19.
The boundary integral equation method was used to solve the problem of the stress sate at the junction of two mine tunnels. The regions of rock breaking are obtained using the Mohr strength criterion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号