首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
PS‐b‐PAA spherical micelles with a liquid core and a PAA shell are prepared with the assistance of 1,2‐dichloroethane. During the process of adding a mixture of PNIPAM‐b‐P4VP and PEG‐b‐P4VP, multi‐layered micelles with a mixed corona that consists of both PNIPAM and PEG chains are constructed through the electrostatic interaction and hydrogen bonding between the PAA block and the P4VP block. When heating above the LCST, the PNIPAM chains collapse onto the PAA/P4VP complex layer while the PEG chains still stretch into the solution through the collapsed PNIPAM layer, which leads to the formation of hydrophilic channels around the PEG chains. The ibuprofen encapsulated in the hollow space can diffuse through the channels and its release rate can be controlled by changing the ratio of PEG chains to PNIPAM chains in the corona.

  相似文献   


2.
Summary: The complexation between polystyrene‐block‐poly(acrylic acid) (PS‐b‐PAA) micelles and poly(ethylene glycol)‐block‐poly(4‐vinyl pyridine) (PEG‐b‐P4VP) is studied, and a facile strategy is proposed to prepare core‐shell‐corona micellar complexes. Micellization of PS‐b‐PAA in ethanol forms spherical core‐shell micelles with PS block as core and PAA block as shell. When PEG‐b‐P4VP is added into the core‐shell micellar solution, the P4VP block is absorbed into the core‐shell micelles to form spherical core‐shell‐corona micellar complexes with the PS block as core, the combined PAA/P4VP blocks as shell and the PEG block as corona. A model is suggested to characterize the core‐shell‐corona micellar complexes.

Schematic formation of core‐shell‐corona (CSC) micellar complexes by adsorption of PEG‐b‐P4VP into core‐shell PS‐b‐PAA micelles.  相似文献   


3.
The silica/polymer hybrid hollow nanoparticles with channels and gatekeepers were successfully fabricated with a facile strategy by using thermoresponsive complex micelles of poly(ethylene glycol)-b-poly(N-isopropylacrylamide) (PEG-b-PNIPAM) and poly(N-isopropylacrylamide)-b-poly(4-vinylpyridine) (PNIPAM-b-P4VP) as the template. In aqueous solution, the complex micelles (PEG-b-PNIPAM/PNIPAM-b-P4VP) formed with the PNIPAM block as the core and the PEG/P4VP blocks as the mixed shell at 45 °C and pH 4.0. After shell cross-linking by 1,2-bis(2-iodoethoxyl)ethane (BIEE), tetraethylorthosilicate (TEOS) selectively well-deposited on the P4VP block and processed the sol-gel reaction. When the temperature was decreased to 4 °C, the PNIPAM block became swollen and further soluble, and the PEG-b-PNIPAM block copolymer escaped from the hybrid nanoparticles as a result of swelled PNIPAM and weak interaction between PEG and silica at pH 4.0. Therefore, the hybrid hollow silica nanoparticles with inner thermoresponsive PNIPAM as gatekeepers and channels in the silica shell were successfully obtained, which could be used for switchable controlled drug release. In the system, the complex micelles, as a template, could avoid the formation of larger aggregates during the preparation of the hybrid hollow silica nanoparticles. The thermoresponsive core (PNIPAM) could conveniently control the hollow space through the stimuli-responsive phase transition instead of calcination or chemical etching. In the meantime, the channel in the hybrid silica shell could be achieved because of the escape of PEG chains from the hybrid nanoparticles.  相似文献   

4.
Worm‐like aggregates with a PAA/P4VP complex core and a PEG/PNIPAM mixed shell were prepared in ethanol by the comicellization of poly(ethylene glycol)‐block‐poly(acrylic acid) (PEG‐b‐PAA) and poly(N‐isopropylacrylamide)‐block‐poly(4‐vinylpyridine) (PNIPAM‐b‐P4VP) through hydrogen‐bonding. The formed aggregates were studied by dynamic light scattering, static light scattering, 1H NMR, and transmission electron microscopy. The length of worm‐like aggregates could be adjusted by changing the weight ratio of W(PNIPAM‐b‐P4VP)/W(PEG‐b‐PAA). When the ratio changed from 20 to 150%, the length changed from about 100 nm to several microns, and the diameter stayed almost unchanged at about 15 nm.

  相似文献   


5.
Poly(styrene)-block-poly(4-vinylpyridine) (PS-b-P4VP) copolymers and poly(acrylic acid) (PAA) have been mixed in organic solvents. Complexation via hydrogen bonding occurs between the P4VP and PAA blocks. Those insoluble complexes aggregate to form the core of micelles surrounded by a corona of PS chains. Reorganization of these structures occurs upon addition of acidic or basic water, which results in the breaking of the hydrogen bonds between the P4VP and PAA blocks. After transfer of the initial complexes in acidic water, micelles consisting of a PS core and a protonated P4VP corona are observed. In basic water, well-defined nanoparticles formed by the PS-b-P4VP copolymers are obtained. It is demonstrated that these nanoparticles are stabilized by the negatively charged PAA chains. Finally, thermally induced disintegration of the micelles is investigated in organic solvents.  相似文献   

6.
A hetero‐arm star polymer, poly(ethylene glycol)‐poly(N‐isopropylacrylamide)‐poly(L‐lysine) (PEG‐PNIPAM‐PLys), was synthesized by “clicking” the azide group at the junction of PEG‐b‐PNIPAM diblock copolymer with the alkyne end‐group of poly(L‐lysine) (PLys) homopolymer via 1,3‐dipolar cycloaddition. The resultant polymer was characterized by gel permeation chromatography, proton nuclear magnetic resonance, and Fourier transform infrared spectroscopes. Surprisingly, the PNIPAM arm of this hetero‐arm star polymer nearly lose its thermal responsibility. It is found that stable polyelectrolyte complex micelles are formed when mixing the synthesized polymer with poly(acrylic acid) (PAA) in water. The resultant polyelectrolyte complex micelles are core‐shell spheres with the ion‐bonded PLys/PAA chains as core and the PEG and PNIPAM chains as shell. The PNIPAM shell is, as expected, thermally responsive. However, its lower critical solution temperature is shifted to 37.5 °C, presumably because of the existence of hydrophilic components in the micelles. Such star‐like PEG‐PNIPAM‐PLys polymer with different functional arms as well as its complexation with anionic polymers provides an excellent and well‐defined model for the design of nonviral vectors to deliver DNA, RNA, and anionic molecular medicines. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1450–1462, 2009  相似文献   

7.
Double‐responsive core‐shell‐corona complex micelles for applications in drug release were formed from self‐assembly of two diblock copolymers PtBA‐b‐ PNIPAM and PtBA‐b‐P4VP. The two diblock copolymers coaggregated into core‐shell complex micelles in acidic water with the hydrophobic PtBA blocks as the common core and soluble PNIPAM/P4VP blocks as the mixed shell. Increasing temperature or pH value, the micelles converted into core‐shell‐corona micelles because of the collapse of PNIPAM or P4VP blocks as the inner shell and soluble P4VP or PNIPAM chains stretching outside as the outer corona. The anti‐inflammation drug naproxen (NAP) was loaded as the model drug in micelles in acidic water and released because of the ionization of NAP in alkaline solutions. Compared with pure core‐shell micelles, release of NAP from core‐shell‐corona complex micelles avoided the burst diffusion and the release rate is more easily controlled by tuning the composition of the mixtures or by adjusting the pH of the medium. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1804–1810, 2009  相似文献   

8.
用聚丙烯酸叔丁酯-b-聚乙二醇(PtBA45-b-PEG114)和聚丙烯酸叔丁酯-b-聚4-乙烯基吡啶(PtBA60-b-P4VP80)制备了复合胶束. 该胶束在pH=2.5的酸性水溶液中形成以PtBA为核, PEG和P4VP为壳的稳定球型结构. 在pH=12时, 壳层的P4VP链段变为疏水, 塌缩在PtBA的核上形成内壳, PEG链段继续保持溶解状态, 与成核的PtBA连接并穿过塌陷的P4VP内壳, 形成胶束的冠, 由于PEG处于溶解状态, 其分子链间有比较大的空隙, 可以控制一些小分子通过, 在胶束的表面形成通道. 该通道类似于生物膜的蛋白通道, 可以控制PtBA核与外界进行能量或物质交换的速度. 以布洛芬为模型分子, 负载在胶束内进行药物控制释放研究的结果表明, 胶束表面的通道可以起到明显控制布洛芬释放速度的作用, 并且药物的释放速度与通道在胶束表面的比例成正比.  相似文献   

9.
Summary: Spherical micelles have been formed by mixing, in DMF, a poly(styrene)‐block‐poly(2‐vinylpyridine)‐block‐poly(ethylene oxide) (PS‐block‐P2VP‐block‐PEO) triblock copolymer with either poly(acrylic acid) (PAA) or a tapered triblock copolymer consisting of a PAA central block and PEO macromonomer‐based outer blocks. Noncovalent interactions between PAA and P2VP result in the micellar core while the outer corona contains both PS and PEO chains. Segregation of the coronal chains is observed when the tapered copolymer is used.

Inclusion of comb‐like chains with short PEO teeth in the corona triggers the nanophase segregation of PS and PEO as illustrated here (PS = polystyrene; PEO = poly(ethylene oxide)).  相似文献   


10.
Aggregation of 5,10,15,20-tetrakis-(4-sulfonatophenyl)-porphyrin (TPPS) was investigated in complex micelles composed of poly(ethylene glycol)-block-poly(4-vinylpyridine) (PEG-b-P4VP) and poly(2-(dimethylamino)ethyl methylacrylate)-b-poly(Nisopropylacrylamide) (PDMAEMA-b-PNIPAM) in aqueous solutions.The resultant complex micelles had a complex P4VP/ PDMAEMA/TPPS core and a mixed PEG/PNIPAM shell.Different noncovalent interaction modes between the porphyrin and each copolymer accomplished a co-effect on the ...  相似文献   

11.
We investigated the phase behavior and the microscopic structure of the colloidal complexes constituted from neutral/polyelectrolyte diblock copolymers and oppositely charged surfactant by dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The neutral block is poly(N-isopropylacrylamide) (PNIPAM), and the polyelectrolyte block is negatively charged poly(acrylic acid) (PAA). In aqueous solution with neutral pH, PAA behaves as a weak polyelectrolyte, whereas PNIPAM is neutral and in good-solvent condition at ambient temperature, but in poor-solvent condition above approximately 32 degrees C. This block copolymer, PNIPAM-b-PAA with a narrow polydispersity, is studied in aqueous solution with an anionic surfactant, dodecyltrimethylammonium bromide (DTAB). For a low surfactant-to-polymer charge ratio Z lower than the critical value ZC, the colloidal complexes are single DTAB micelles dressed by a few PNIPAM-b-PAA. Above ZC, the colloidal complexes form a core-shell microstructure. The core of the complex consists of densely packed DTA+ micelles, most likely connected between them by PAA blocks. The intermicellar distance of the DTA+ micelles is approximately 39 A, which is independent of the charge ratio Z as well as the temperature. The corona of the complex is constituted from the thermosensitive PNIPAM. At lower temperature the macroscopic phase separation is hindered by the swollen PNIPAM chains. Above the critical temperature TC, the PNIPAM corona collapses leading to hydrophobic aggregates of the colloidal complexes.  相似文献   

12.
Polymer complexes were prepared from high molecular weight poly(acrylic acid) (PAA) and poly(styrene)‐block‐poly(4‐vinyl pyridine) (PS‐b‐P4VP) in dimethyl formamide (DMF). The hydrogen bonding interactions, phase behavior, and morphology of the complexes were investigated using Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), dynamic light scattering (DLS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). In this A‐b‐B/C type block copolymer/homopolymer system, P4VP block of the block copolymer has strong intermolecular interaction with PAA which led to the formation of nanostructured micelles at various PAA concentrations. The pure PS‐b‐P4VP block copolymer showed a cylindrical rodlike morphology. Spherical micelles were observed in the complexes and the size of the micelles increased with increasing PAA concentration. The micelles are composed of hydrogen‐bonded PAA/P4VP core and non‐bonded PS corona. Finally, a model was proposed to explain the microphase morphology of complex based on the experimental results obtained. The selective swelling of the PS‐b‐P4VP block copolymer by PAA resulted in the formation of different micelles. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1192–1202, 2009  相似文献   

13.
Complex micelles were obtained from PS‐b‐PNIPAM‐b‐PAA micelles and PEG‐b‐P4VP block copolymers via the strong electrostatic interaction and hydrogen bonding between PAA and P4VP blocks in water. The PS block formed the core and the PAA/P4VP complex shell functioned as a semi‐permeable membrane which could control the permeation of small molecules. Between the core and shell, the large fluid‐filled space that was formed with the thermoresponsive PNIPAM gel could retain the loaded drug for a long period of time. With increasing temperature, the shrinkage of the PNIPAM coils pumped the drug out of the complex micelles. The complex micelles functioned as a contractive “nanopump”, which could potentially be applied as a thermosensitive controlled release system.

  相似文献   


14.
A double hydrophilic block copolymer composed of poly(acrylic acid) (PAA) and poly(4‐vinyl pyridine) (P4VP) was obtained through hydrolysis of diblock copolymer of poly(tert‐butyl acrylate) (PtBA) and P4VP synthesized using atom transfer radical polymerization. Water‐soluble micelles with PAA core and P4VP corona were observed at low (acidic) pH, while micelles with P4VP core and PAA corona were formed at high (basic) pH. Two metalloporphyrins, zinc tetraphenylporphyrin (ZnTPP) and cobalt tetraphenylporphyrin (CoTPP), were used as model compounds to investigate the encapsulation of hydrophobic molecules by both types of micelles. UV–vis spectroscopic measurements indicate that micelles with P4VP core are able to entrap more ZnTPP and CoTPP as a result of the axial coordination between the transition metals and the pyridine groups. The study found that metalloporphyrins encapsulated by the micelles with PAA core could be released on pH increase, while those entrapped by the micelles with P4VP core could be released on pH decrease. This behavior originates from the two‐way pH change‐induced disruption of PAA‐b‐P4VP micelles. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1734–1744, 2006  相似文献   

15.
The aggregate morphologies of the biamphiphilic triblock PAA(26)-b-PS(890)-b-P4VP(40) have been studied by TEM as a function of pH in DMF/THF/H(2)O mixtures. The outside surfaces of the aggregates were characterized by zeta potential measurements. Starting at the apparent pH (pH) of 1, and increasing gradually to pH14, the aggregate morphologies of this triblock change progressively from vesicles (pH1), to solid spherical or ellipsoidal aggregates (pH3 approximately 11), and finally back to vesicles (pH14). Vesicles prepared at pH1 contain P4VP chains on the outside and PAA chains on the inside, while those prepared from the same triblock at pH14 contain PAA outside and P4VP inside. The segregation is based on the difference in repulsive interactions within the PAA or P4VP corona under different pH conditions. At low pH, the curvature is stabilized through increased repulsive interactions between the P4VP chains on the outside relative to the less repulsive interactions between the PAA chains on the inside. At pH14, by contrast, the PAA is preferentially segregated to the outside and the P4VP to the inside because of the increased repulsive interaction between PAA chains and the decreased repulsive interaction between P4VP chains at high pH. Most importantly, vesicles with PAA on the outside can be inverted to P4VP on the outside by changing the pH while the vesicles have swollen cores and are under dynamic conditions. The conversion mechanism is suggested to involve a whole vesicle process because the CMC is far too low for single chain reassembly to be involved.  相似文献   

16.
Adsorption of the thermoresponsive copolymer of poly(N-isopropylacrylamide-co-4-vinylpyridine) (PNIPAM-co-P4VP) onto the core-shell microspheres of poly(styrene-co-methylacrylic acid) (PS-co-PMAA) is studied. The core-shell PS-co-PMAA microspheres are synthesized by one-stage soap-free polymerization in water. The copolymer of PNIPAM-co-P4VP is synthesized by free radical polymerization of N-isopropylacrylamide and 4-vinylpyridine in the mixture of DMF and water using K2S2O8 as initiator. Adsorption of PNIPAM-co-P4VP onto the core-shell PS-co-PMAA microspheres results in formation of the composite microspheres of PS/PMAA-P4VP/PNIPAM. The driven force to adsorb the copolymer of P4VP-co-PNIPAM onto the core-shell PS-co-PMAA microspheres is ascribed to hydrogen-bonding and electrostatic affinity between the P4VP and PMAA segments. The resultant composite microspheres of PS/PMAA-P4VP/PNIPAM with surface chains of PNIPAM are thermoresponsive in water and show a cloud-point temperature at about 33 °C.  相似文献   

17.
The pyranine-induced micellization of poly(ethylene glycol)-block-poly(4-vinylpyridine) (PEG114-b-P4VP61) in aqueous solutions and pH-triggered release of pyranine from the complex micelles were studied by dynamic and static light scattering, transmission electron microscopy, 1H NMR spectroscopy, and UV-vis spectroscopy. At pH 2, the ionized pyranine can ionically cross-link the protonated P4VP block and result in well-defined spherical complex micelles with a P4VP/pyranine core surrounded by a PEG corona. The ratio of pyranine to pyridyl units can influence the structure and the properties of the resultant complex micelles. The complex micelles are stable upon dilution and heating but are sensitive to pH changes. pH-triggered release of the incorporated pyranine from the complex micelles demonstrates that the release behavior is pH-tunable and displays good controlled-release characteristics at pH approximately 4.  相似文献   

18.
The molecular structures of the interfaces between a solid poly(4‐vinyl pyridine) (P4VP) surface and poly(acrylic acid) (PAA) as well as hydrochloric acid (HCl) solutions were probed using sum frequency generation (SFG) vibrational spectroscopy in situ in real time. Spectroscopic results clearly reveal that the PAA molecules are adsorbed onto the P4VP surface via hydrogen bonding at the P4VP/PAA solution interface while the P4VP surface is protonated at the P4VP/HCl solution interface. Consequently, the water molecules near the interfaces are strongly perturbed by these two interactions, exhibiting different orderings at the two interfaces. This work clearly demonstrates the power of studying the interfacial molecular‐level structures via nonlinear vibrational spectroscopy when molecular adsorption happens at the solid–liquid interface and paves a way for our future study on tracing the adsorption dynamics of polymer chains onto solid surfaces. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 848–852  相似文献   

19.
Novel kind of core-shell corona complex micelles were prepared, which enhanced both the hydrolytic stability and the photostability of water-soluble zinc tetrakis(4-sulfonatophenyl) porphyrin (ZnTPPS) in acidic aqueous solutions. The core-shell gold nanoparticles (AuNPS) were synthesized by reducing HAuCl4 and di-thioester terminated block copolymer, poly(Nisopropylacrylamide)-block-poly(4-vinylpyridine) (PNIPAM-b-P4VP). The complex micelles with gold core, P4VP/ZnTPPS shell and PNIPAM corona were formed by simple mixing of gold nanoparticles and ZnTPPS. The photochemical properties of the complex micelles were studied by UV–Visiblespectroscopy and fluorescence spectroscopy. The results showed trapping of ZnTPPS in the positively charged micellar shell that effectively prevented demetallation of the ZnTPPS that would occur in acidic aqueous solutions. Furthermore, with appropriate concentration of gold nanoparticles, ZnTPPS in the complex micelle had excellent photostability by suppression of generation of reactive oxygen species (ROS). The enhanced stability of ZnTPPS in acidic aqueous media could be extensively used for photocatalysis and in solar cells.  相似文献   

20.
The phase states of mixed dilute solutions of PAA, PEG, and Cu2+ ions largely determines the mechanism governing the growth of metal nanoparticles during the subsequent reduction of copper ions. Mixtures with PAA: PEG > 1 base-mol/base-mol and PAA: Cu2+ ≥ 5 base-mol/mol are studied. It is shown that the simultaneous complexation of PAA with PEG and Cu2+ ions in these mixtures at pH values below the intrinsic pH of a solution is accompanied by phase separation related to insolubility of PAA-PEG interpolymer complexes. A decrease in the pH of the ternary mixture is caused by the release of a strong low-molecular-mass acid due to complexation with Cu2+ ions. The minimum pH value, above which the PAA-PEG-Cu2+ system becomes single-phase (a transparent solution), depends on the concentration ratio between PAA and PEG chains (the mean degree of polymerization). This value is either 6.8–7.0 (if all macromolecules are incorporated in the insoluble interpolymer complex with PEG) or 4.0 (if chains occur in excess). Methods of preparing single-phase systems in the pH range 4.0–7.0 via exchange reactions of the PAA-Cu2+ complex with PEG or the nonstoichiometric soluble interpolymer complex PAA-PEG are developed. Viscometry, electron microscopy, and dynamic light scattering are used to investigate the compositions and structures of soluble complexes, in which either each chain (if the chain is long) may be linked with both PEG and Cu2+ ions or PAA chains are redistributed between two complexes (at comparable lengths of PAA and PEG chains).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号