首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An accurate computational method based on the boundary integral formulation is presented for solving boundary value problems for Stokes and Darcy flows. The method also applies to problems where the equations are coupled across an interface through appropriate boundary conditions. The adopted technique consists of first reformulating the singular integrals for the fluid quantities as single and double layer potentials. Then the layer potentials are regularized and discretized using standard quadratures. As a final step, the leading term in the regularization error is eliminated in order to gain one more order of accuracy. The numerical examples demonstrate the increase of the convergence rate from first to second order and show a decrease in magnitude of the error. The coupled problems require the computation of the gradient of the Stokes velocity at the common interface. This boundary condition is also written as a combination of single and double layer potentials so that the same approach can be used to compute it accurately. Extensive numerical examples show the increased accuracy gained by the correction terms.  相似文献   

2.
We combine the finite element method with the Eulerian–Lagrangian Localized Adjoint Method (ELLAM) to solve the convection–diffusion equations that describe the kinematics of magnetohydrodynamic flows, i.e., the advection and diffusion of a magnetic field. Simulations of three two-dimensional test problems are presented and in each case we analyze the energy of the magnetic field as it evolves towards its equilibrium state. Our numerical results highlight the accuracy and efficiency of the ELLAM approach for convection-dominated problems.  相似文献   

3.
We combine the finite element method with the Eulerian–Lagrangian Localized Adjoint Method (ELLAM) to solve the convection–diffusion equations that describe the kinematics of magnetohydrodynamic flows, i.e., the advection and diffusion of a magnetic field. Simulations of three two-dimensional test problems are presented and in each case we analyze the energy of the magnetic field as it evolves towards its equilibrium state. Our numerical results highlight the accuracy and efficiency of the ELLAM approach for convection-dominated problems.  相似文献   

4.
Two-dimensional flows with suction or mass loss are investigated within Darcy’s or Stokes’ framework. Examples include a Hele-Shaw cell with a lifted plate or extraction of lipids from a lipid bilayer. An initially circular patch ret-racts due to the suction and might undergo an instability whereby it becomes undulating. The selection of the wavelength of undulations is investigated with the help of an extremum principle, the minimization of the generalized dissipation, from which derive the flow equations.  相似文献   

5.
6.
7.
A substantial number of algorithms exists for the simulation of moving particles suspended in fluids. However, finding the best method to address a particular physical problem is often highly non-trivial and depends on the properties of the particles and the involved fluid(s) together. In this report, we provide a short overview on a number of existing simulation methods and provide two state of the art examples in more detail. In both cases, the particles are described using a Discrete Element Method (DEM). The DEM solver is usually coupled to a fluid-solver, which can be classified as grid-based or mesh-free (one example for each is given). Fluid solvers feature different resolutions relative to the particle size and separation. First, a multicomponent lattice Boltzmann algorithm (mesh-based and with rather fine resolution) is presented to study the behavior of particle stabilized fluid interfaces and second, a Smoothed Particle Hydrodynamics implementation (mesh-free, meso-scale resolution, similar to the particle size) is introduced to highlight a new player in the field, which is expected to be particularly suited for flows including free surfaces.  相似文献   

8.
In this mini-review we summarize the progress of Lattice Boltzmann (LB) modeling and simulating compressible flows in our group in recent years. Main contents include (i) Single-Relaxation-Time (SRT) LB model supplemented by additional viscosity, (ii) Multiple-Relaxation-Time (MRT) LB model, and (iii) LB study on hydrodynamic instabilities. The former two belong to improvements of physical modeling and the third belongs to simulation or application. The SRT-LB model supplemented by additional viscosity keeps the original framework of Lattice Bhatnagar-Gross-Krook (LBGK). So, it is easier and more convenient for previous SRT-LB users. The MRT-LB is a completely new framework for physical modeling. It significantly extends the range of LB applications. The cost is longer computational time. The developed SRT-LB and MRT-LB are complementary from the sides of convenience and applicability.  相似文献   

9.
10.
可压流体Rayleigh-Taylor不稳定性的离散Boltzmann模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
使用离散Boltzmann模型模拟了可压流体系统中多模初始情况下的Rayleigh-Taylor不稳定性.该离散Boltzmann模型等效于一个Navier-Stokes模型外加一个关于热动非平衡行为的粗粒化模型.通过模拟Riemann问题:Sod激波管、冲击波碰撞和热Couette流问题验证模型的有效性,所得数值结果与解析解一致.利用该模型对界面间断随机多模初始扰动的可压Rayleigh-Taylor不稳定性进行数值模拟研究,得到不稳定性界面演化过程的基本图像.由于黏性和热传导共同作用,一开始扰动界面被"抹平",演化较慢;随着模式互相耦合而减少,演化开始加速,并经历非线性小扰动阶段和不规则非线性阶段,而后发展成典型的"蘑菇状",后期进入湍流混合阶段.由于扰动模式的耦合与发展,轻重流体的重力势能、压缩能与动能相互转化,系统先是趋于热动平衡态,而后偏离热动平衡态以线性形式增长,接着再次趋于热动平衡态,最后慢慢远离热动平衡态.  相似文献   

11.
The subgrid-scale (SGS) eddy-viscosity model developed by Vreman [Phys. Fluids 16 (2004) 3670] and its dynamic version [Phys. Fluids 19 (2007) 065110] are tested in large-eddy simulations (LES) of the turbulent flow in an Re = 12,000 lid-driven cubical cavity by comparison to the direct numerical simulation (DNS) data of Leriche and Gavrilakis [Phys. Fluids 12 (2000) 1363]. This appears to be the first test of this class of model to flows without any homogeneous flow directions, which is typical of flows in complex geometries. Additional LES predictions at Re = 18,000 and Re = 22,000 are compared to the DNS data of Leriche [J. Sci. Comp. 27 (2006)]. The new LES framework yielded excellent agreement for both the mean velocity and Reynolds stress profiles and matches DNS data better than the more traditional Smagorinsky-based SGS models.  相似文献   

12.
LES based on explicit filtering is used to study the shock train phenomenon in turbulent supersonic diffuser flows with circular cross-section and isothermal wall with an incoming pipe flow at friction Reynolds number 245 and centerline Mach number 1.7. Alternate regions of compression and expansion are found in the shock train which is followed by a shock-free ‘mixing’ region as observed in experiments and simulations in the literature. Turbulence amplification and local peaks in pressure-dilatation correlation are observed in the vicinity of the shocks. Low-frequency oscillations of the shock train are also observed.  相似文献   

13.
COIL超声速流动的水汽凝结效应数值模拟   总被引:1,自引:1,他引:1       下载免费PDF全文
 在开发的化学氧碘激光器3维化学反应流程序中增设水汽凝结功能,模拟了以氦气和氮气作稀释气体条件下,基于RADICL装置喷管中含水汽凝结的流动。模拟结果给出了水汽凝结形成的5种尺寸液滴的数密度分布及流场各物理量分布,比较了有无水汽凝结时气流的压力、温度、增益分布的变化。模拟结果发现,凝结使气流温度在靠近喉部的下游升高,增益峰值增高。  相似文献   

14.
15.
The resolution of a numerical scheme in both physical and Fourier spaces is one of the most important requirements to calculate turbulent flows. A conservative form of the interpolated differential operator (IDO-CF) scheme is a multi-moment Eulerian scheme in which point values and integrated average values are separately defined in one cell. Since the IDO-CF scheme using high-order interpolation functions is constructed with compact stencils, the boundary conditions are able to be treated as easy as the 2nd-order finite difference method (FDM). It is unique that the first-order spatial derivative of the point value is derived from the interpolation function with 4th-order accuracy and the volume averaged value is based on the exact finite volume formulation, so that the IDO-CF scheme has higher spectral resolution than conventional FDMs with 4th-order accuracy. The computational cost to calculate the first-order spatial derivative with non-uniform grid spacing is one-third of the 4th-order FDM. For a large-eddy simulation (LES), we use the coherent structure model (CSM) in which the model coefficient is locally obtained from a turbulent structure extracted from a second invariant of the velocity gradient tensor, and the model coefficient correctly satisfies asymptotic behaviors to walls.  相似文献   

16.

Abstract  

We propose a method of fluid simulation where boundary conditions are designed in such a way that fluid flow through porous media, pipes, and chokes can be realistically simulated. Such flows are known to be low Reynolds number incompressible flows and occur in many real life situations. To obtain a high quality fluid surface, we include a scalar value in isofunction. The scalar value indicates the relative position of each particle with respect to the fluid surface.  相似文献   

17.
Complex investigation of the structure of electrohydrodynamic (EHD) flows in a needle-plane electrode system is carried out on the basis of analysis of experimental data and the results of computer simulation. An algorithm of iterative simulation of the volume charge distribution in a fluid is developed. Simulation is carried out using the ANSYS system. The fields of velocities and pressures, as well as electric characteristics of EHD flows, are calculated. Analysis of the results reveals a number of features of EHD flows in the electrode system under investigation. Peculiarities of the band structure are determined, and the characteristic size of the low-pressure zone near the active electrode, as well as the sizes of the acceleration and deceleration zones of the fluid in the electrode gap, is determined.  相似文献   

18.
We have developed a GPU-based molecular dynamics simulation for the study of flows of fluids with anisotropic molecules such as liquid crystals. An application of the simulation to the study of macroscopic flow (backflow) generation by molecular reorientation in a nematic liquid crystal under the application of an electric field is presented. The computations of intermolecular force and torque are parallelized on the GPU using the cell-list method, and an efficient algorithm to update the cell lists was proposed. Some important issues in the implementation of computations that involve a large number of arithmetic operations and data on the GPU that has limited high-speed memory resources are addressed extensively. Despite the relatively low GPU occupancy in the calculation of intermolecular force and torque, the computation on a recent GPU is about 50 times faster than that on a single core of a recent CPU, thus simulations involving a large number of molecules using a personal computer are possible. The GPU-based simulation should allow an extensive investigation of the molecular-level mechanisms underlying various macroscopic flow phenomena in fluids with anisotropic molecules.  相似文献   

19.
吴春亮  詹杰民 《中国物理》2005,14(3):620-627
Sedimentation of particles in inclined and vertical vessels is numerically simulated using a finite volume method where the Eulerian multiphase model is applied. The particulate phase as well as the fluid phase is regarded as a continuum while the viscosity and solid stress of the particulate phase are modelled by the kinetic theory of granular flows. The numerical results show an interesting phenomenon of the emergence of two circulation vortices of the sedimentation flow in a vertical vessel but only one in the inclined vessel. Several sensitivity tests are simulated to understand the factors that influence the dual-vortex flow structure in vertical sedimentation. Results show that a larger fluid viscosity makes the two vortex centres much closer to each other and the boundary layer effect at lateral walls is the key factor to induce this phenomenon. In the fluid boundary layer particles settle down more rapidly and drag the local carrier fluid to flow downward near the lateral walls and thus form the dual-vortex flow pattern.  相似文献   

20.
To understand how thermocapillary forces manipulate droplet motion in microfluidic channels, we develop a lattice Boltzmann (LB) multiphase model to simulate thermocapillary flows. The complex hydrodynamic interactions are described by an improved color-fluid LB model, in which the interfacial tension forces and the Marangoni stresses are modeled in a consistent manner using the concept of a continuum surface force. An additional convection–diffusion equation is solved in the LB framework to obtain the temperature field, which is coupled to the interfacial tension through an equation of state. A stress-free boundary condition is also introduced to treat outflow boundary, which can conserve the total mass of an incompressible system, thus improving the numerical stability for creeping flows.The model is firstly validated against the analytical solutions for the thermocapillary driven convection in two superimposed fluids at negligibly small Reynolds and Marangoni numbers. It is then used to simulate thermocapillary migration of three-dimensional deformable droplet at various Marangoni numbers, and its accuracy is once again verified against the theoretical prediction in the limit of zero Marangoni number. Finally, we numerically investigate how the localized heating from a laser can block the microfluidic droplet motion through the induced thermocapillary forces. The droplet motion can be completely blocked provided that the intensity of laser exceeds a threshold value, below which the droplet motion successively undergoes four stages: constant velocity, deceleration, acceleration, and constant velocity. When the droplet motion is completely blocked, four steady vortices are clearly visible, and the droplet is fully filled by two internal vortices. The external vortices diminish when the intensity of laser increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号