首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S. Voss  M. Fonin  F. Zinser  M. Burgert  U. Groth  U. Rüdiger 《Polyhedron》2009,28(9-10):1606-1609
The possibility to use the Au(1 0 0)/Fe(1 0 0)/MgO(1 0 0) system as a substrate for future spin-polarized transport measurements on Mn12 single molecule magnets has been investigated by means of scanning tunneling microscopy and X-ray photoelectron spectroscopy at room temperature. In particular, the stability of the iron layer during a wet chemical preparation of Mn12 monolayers was studied. The results demonstrate that Mn12 can be deposited on Au(1 0 0)/Fe(1 0 0)/MgO(1 0 0) while preserving the metallic nature of the ferromagnetic iron layer which is required as a possible source of spin-polarized electrons in future studies.  相似文献   

2.
Electrochemical deposition of PbTe from 50 mM Pb(NO3)2 + 1 mM TeO2 + 0.1 M HNO3 solution onto n-Si(1 0 0) wafers was studied using cyclic voltammetry (CV), chronoamperometry, ex situ SEM, XRD and EDX. Electrochemical behavior of n-Si(1 0 0) electrode in electrolytes 50 mM Pb(NO3)2 + 0.1 M HNO3 and 1 mM TeO2 + 0.1 M HNO3 was also studied. No underpotential deposition (UPD) of Pb and Te onto n-Si was observed in the investigated systems indicating weak Pb–Si and Te–Si interactions. Deposition of Pb and Te on n-Si occurred with overvoltage via 3D island growth. Electrosynthesis of PbTe (NaCl-like structure, a = 0.650 nm) takes place due to codeposition of Pb and Te at potentials E > EPb2+/Pb0 (lead UPD onto tellurium). Cathodic deposition of PbTe onto n-Si(1 0 0) is irreversible – there is no anodic current in the CV curve. Oxidation of PbTe on n-Si is observed only under illumination, when photoelectrons and photoholes are generated in silicon substrate.  相似文献   

3.
Hydrogen adsorption isotherms, evaluated by combination of cyclic voltammetry and chronoamperometry, are reported on Pt(1 1 1) and Pt(1 0 0) surfaces in 0.1 M HClO4. We found that at E > 0.05 V Pt(1 1 1) and Pt(1 0 0) are only partially covered by the adsorbed hydrogen (Had). On both surfaces, a full monolayer of the adsorbed hydrogen is completed at −0.1 V, i.e. the adsorption of atomic hydrogen is observed in the hydrogen evolution potential region. We also found, that the activity of the hydrogen oxidation reaction is mirrored by the shape of the hydrogen adsorption isotherms, implying that Had is in fact a spectator in the HOR.  相似文献   

4.
According to most of works in the literature, adsorbed carbon monoxide at Pt(1 1 0) electrodes in acid media presents only linear bonded (COL) so-called, atop geometry. In the present work, the formation of bridge bonded carbon monoxide (COB) is shown via in situ infrared FT spectra, measured on a Pt(1 1 0) electrode covered with 25% CO, in HClO4 solutions. For the first time, the inter conversion between atop and bridge bonded CO at potentials in the hydrogen adsorption region is reported in acid solution. Band intensity and band center frequency indicate dipole–dipole coupling effects in spite of the low CO total coverage.  相似文献   

5.
Rhodium adlayers (submonolayer range) have been prepared on Pt(1 0 0) electrodes by electrodeposition from acidic solutions containing an excess of chloride. These Rh/Pt(1 0 0) electrodes give a well-defined voltammetric signal in the hydrogen adsorption region, which gives evidence of a high level of order in the Rh adlayer and allow a reliable estimation of the coverage. The voltammetric behavior of the Rh/Pt(1 0 0) electrodes points to an epitaxial growth with formation of rhodium islands. The well-ordered bimetallic surfaces freshly prepared were tested as electrocatalysts for nitrous oxide reduction and the responses were compared with those of the bulk Pt(1 0 0) and Rh(1 0 0) electrodes. The voltammogram for the bimetallic surface showed well separated N2O reduction signals for Rh and Pt surface zones. An exceptionally high electrocatalytic activity for the Rh adlayer was found for low coverages. This behavior is explained on the basis of a high activity of the rhodium adatoms in the periphery of the islands.  相似文献   

6.
(Mn, Co)-codoped ZnO nanorod arrays were successfully prepared on Cu substrates by electrochemical self-assembly in solution of 0.5 mol/l ZnCl2–0.01 mol/l MnCl2–0.01 mol/l CoCl2–0.1 mol/l KCl–0.05 mol/l tartaric acid at a temperature of 90 °C, and these nanorods were found to be oriented in the c-axis direction with wurtzite structure. Energy dispersive X-ray spectroscopy and x-ray diffraction show that the dopants Mn and Co are incorporated into the wurtzite-structure of ZnO. The concentrations of the dopants, and the orientations and densities of nanorods can easily be well controlled by the current densities of deposition or salt concentrations. Magnetization measurement indicates that the prepared (Mn, Co)-codoped ZnO nanorods with a coercivity of about 91 Oe and a saturation magnetization (Ms) of about 0.23 emu/g. The anisotropic magnetism for the (Mn, Co)-codoped ZnO nanorod arrays prepared in solution of 0.5 mol/l ZnCl2–0.01 mol/l MnCl2–0.01 mol/l CoCl2–0.1 mol/l KCl–0.05 mol/l tartaric acid with current density of 0.5 mA/cm2 was also investigated, and the crossover where the magnetic easy axis switches from parallel to perpendicular occurs at a calculated time of about 112 min. The anisotropic magnetism, depending on the rod geometry and density, can be explained in terms of a competition between self-demagnetization and magnetostatic coupling among the nanorods.  相似文献   

7.
8.
The densities of {water (1) + tert-butanol (2)} binary mixture were measured over the temperature range (274.15 to 348.15) K at atmospheric pressure using “Anton Paar” digital vibrating-tube densimeter. Density measurements were carried out over the whole concentration range at (308.15 to 348.15) K. The following volume parameters were calculated: excess molar volumes and thermal isobaric expansivities of the mixture, partial molar volumes and partial molar thermal isobaric expansivities of the components. Concentration dependences of excess molar volumes were fitted with Redlich–Kister equation. The results of partial molar volume calculations using four equations were compared. It was established that for low alcohol concentrations at T ? 208 K the inflection points at x2  0.02 were observed at concentration dependences of specific volume. The concentration dependences of partial molar volumes of both water and tert-butanol had extremes at low alcohol content. The temperature dependence of partial molar volumes of water had some inversion at х2  0.65. The temperature dependence of partial molar volumes of tert-butanol at infinite dilution had minimum at ≈288 K. It was discovered that concentration dependences of thermal isobaric expansivities of the mixture at small alcohol content and low temperatures passed through minimum.  相似文献   

9.
《Chemical physics letters》2003,367(1-2):214-218
A simple physical vapor deposition technique, oxidizing W filaments and in situ evaporating via infrared irradiation heating at 950–1000 °C in air, was developed to prepare WO3 one-dimensional nanostructures on Si wafers. Most of the nanostructures were nanorods with polygonal cross-sections, tens of nanometers in width. The nanorods were single-crystalline monoclinic structure, with the axes preferentially aligned along the [1 0 0] or [0 1 0] directions. In addition, some single-crystalline nanobelts of hexagonal structure were formed, with their length directions lying along the [1 1 0] direction. The formation of two different structures is discussed based on their cell parameters.  相似文献   

10.
11.
(Solid + liquid) equilibrium data for indomethacin (IMC) and nicotinamide (NCT) in both methanol (MeOH) and methanol/ethyl acetate (EA) mixture were determined using a static method at T = (298.15 and 313.15) K under atmospheric pressure. The 1:1 (IMC + NCT) co-crystal and IMC·MeOH were found in both systems under conditions investigated. The solubility of the 1:1 (IMC + NCT) co-crystal was correlated using a mathematical model consisting of both solubility product and a complexation process. Solubility of (IMC + NCT) co-crystals as a function of co-former (NCT) concentration was evaluated. It was found that temperature has a significant effect on the formation of methanol solvate in the systems investigated. Solvate formation could be suppressed either by increasing temperature or using solvent mixtures. Additionally, the solvent mixture could level out the solubility differences between IMC and NCT, resulting in larger and more symmetric regions for the (IMC + NCT) co-crystal, which would be helpful to the development of the co-crystallization process for the 1:1 (IMC + NCT) co-crystal.  相似文献   

12.
The electronic and magnetic states of a monatomic Fe(0 0 1) layer directly facing an MgO(0 0 1) tunnel barrier were studied by angle-resolved X-ray magnetic circular dichroism (XMCD) at the Fe L2,3 edges in the longitudinal (L) and transverse (T) arrangements. A strong XMCD reveals no oxidation of the 1-ML Fe, showing its crucial role in giant tunnel magnetoresistance effects in Fe/MgO/Fe magnetic tunnel junctions. Sum-rule analyses of the angle-resolved XMCD give values of a spin moment, in-plane and out-of-plane orbital and magnetic dipole moments. Argument is given on their physical implication.  相似文献   

13.
《Chemical physics letters》2006,417(1-3):72-77
The atomic structure of the Al-induced clusters on Si(0 0 1) surface formed by the annealing of 0.5 ML Al/Si(0 0 1) at 500 °C has been studied using coaxial impact collision ion scattering spectroscopy (CAICISS). CAICISS results proposed that the Al atoms occupy the cave site (T4 site) and off-centered T4 site. To determine the structure of the Al-induced clusters definitely, classical ion-scattering trajectory simulations using scattering and recoiling imaging code (SARIC) have been performed for the recently proposed most possible four different cluster models (Bunk, Zotov, Kotlyar, and Zavodinsky model). Our CAICISS spectra and simulation results show that the Bunk model is the best plausible one among the models. As the results of the simulations, it is found that Al–Si dimers has been oriented on the topmost layer of the Si(0 0 1) surface with a bonding length (Δz) of 1.00 ± 0.05 Å.  相似文献   

14.
Ab initio quantum chemical modelling (GGA, CASTEP and B3LYP, CRYSTAL03) is used to predict differences in electronic structure between the (1 0 0) surface and bulk of pyrite. Experimental X-ray photoelectron spectroscopic (XPS) data for the S 2p core lines show the presence of two types of S surface states: surface S2− monomers at a S 2p3/2 binding energy (BE) of 161.2 eV, and (S–S)2− surface dimer states at a S 2p3/2 BE of 162.0 eV, compared to the S 2p3/2 BE of bulk pyrite at 162.7 eV. The Fe 2p surface XPS displays several multiplets (implying high spin configuration) at higher BE than the bulk Fe 2p signal, which can be ascribed to surface state contributions. The quantum chemical simulation predicts an S 2p core level shift of 0.69 eV between the S bulk and S surface dimers, in good agreement with the 0.6 eV found in XPS measurements. A Mulliken population analysis confirms the conjectured charge distribution on the surface, which leads to the two different S surface states, as well as the surface high spin configuration responsible for the high BE Fe multiplets. Evidence for surface Fe2+ and Fe3+ surface states can be seen in the Fe projected valence band density of states, confirming the interpretation of the photoemission spectra.  相似文献   

15.
16.
《Chemical physics letters》2006,417(1-3):6-10
Ab initio total energy calculations have been performed for Na, K and Rb adsorption on Ge(0 0 1)(2 × 1) surface. It was found that the adsorption site of AM is AM size dependent. Structural analysis showed that the Ge–Ge dimer bond becomes stronger with increasing AM size. As the coverage increases from 0.5 to 1 ML it turns out that no depolarization effect occurs upon Na adsorption, while this effect becomes more important with increasing AM size. We also found that for all adsorption systems investigated the germanium surface is metallic and semiconducting for the coverage of 0.5 and 1 ML, respectively.  相似文献   

17.
Activity coefficients for the (CaCl2 + amino acid + water) system were determined at a temperature of 298.15 K using ion-selective electrodes. The range of molalities of CaCl2 is (0.01 to 0.20) mol · kg?1, and that of amino acids is (0.10 to 0.40) mol · kg?1. The activity coefficients obtained from the Debye–Hückel extended equation and the Pitzer equation are in good agreement with each other. Results show that the interactions between CaCl2 and amino acid are controlled mainly by the electrostatic interactions (attraction). Gibbs free energy interaction parameters (gEA) and salting constants (kS) are positive, indicating that these amino acids are salted out by CaCl2. These results are discussed based on group additivity model.  相似文献   

18.
The speed of sound in {(1  x)CH4 + xN2} has been measured with a spherical acoustic resonator. Two mixtures with x = (0.10001 and 0.19999) were studied along isotherms at temperatures between 220 K and 400 K with pressures up to 20 MPa; a few additional measurements at p = (25 and 30) MPa are also reported. A third mixture with x = 0.5422 was studied along pseudo-isochores at amount-of-substance densities between 0.2 mol · dm−3 and 5 mol · dm−3. Corrections for molecular vibrational relaxation are discussed in detail and relaxation times are reported. The overall uncertainty of the measured speeds of sound is estimated to be not worse than ±0.02%, except for those measurements in the mixture with x = 0.5422 that lie along the pseduo-isochore at the highest amount-of-substance density. The results have been compared with the predictions of several equations of state used for natural gas systems.  相似文献   

19.
The previous isopiestic investigations of HTcO4 aqueous solutions at T = 298.15 K are believed to be unreliable, because of the formation of a ternary mixture at high molality. Consequently, published isopiestic molalities for aqueous HTcO4 solutions at T = 298.15 K were completed and corrected. Binary data (variation of the osmotic coefficient and activity coefficient of the electrolyte in solution in the water) at T = 298.15 K for pertechnetic acid HTcO4 were determined by direct water activity measurements. These measurements extend from molality m = 1.4 mol · kg−1 to m = 8.32 mol · kg−1. The variation of the osmotic coefficient of this acid in water is represented mathematically. Density variations at T = 298.15 K are also established and used to express the activity coefficient values on both the molar and molal concentration scale. The density law leads to the partial molar volume variations for aqueous HTcO4 solutions at T = 298.15 K, which are compared with published data.  相似文献   

20.
The thermodynamic properties of liquid (Au–Sb–Sn) alloys were studied with an electromotive force (EMF) method using the eutectic mixture of KCl/LiCl with addition of SnCl2 as a liquid electrolyte. Activities of Sn in the liquid alloys were measured at three cross-sections with constant molar ratios of Au:Sb = 2:1, 1:1, and 1:2 with tin in the concentration range between 5 at.% and 90 at.% from the liquidus of the samples up to 1073 K. The integral Gibbs excess energies and the integral enthalpies at 873 K were calculated by Gibbs–Duhem integration. Additionally liquid Au–Sb alloys have been measured at 913 K with the EMF method as no reliable data for the Gibbs excess energies have been found in literature. The eutectic mixture of KCl/LiCl with addition of SbCl3 has been used as an electrolyte for the measurements. The Gibbs excess energies from the (Au + Sb) system were necessary for the integration of the thermodynamic properties of the ternary (Au + Sb + Sn) system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号