首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single crystals of (NH(4))(4)[(UO(2))(5)(MoO(4))(7)](H(2)O)(5) have been synthesized hydrothermally using (NH(4))(6)Mo(7)O(24), (UO(2))(CH(3)COO)(2).2H(2)O, and H(2)O at 180 degrees C. The phase has been characterized by single-crystal X-ray diffraction using a merohedrally twinned single crystal: it is hexagonal, P6(1), a = 11.4067(5) A, c = 70.659(5) A, V = 7961.9(7) A(3), and Z = 6. The structure is based upon an open framework with composition [(UO(2))(5)(MoO(4))(7)](4-) that is composed of UO(7) pentagonal bipyramids that share vertexes with MoO(4) tetrahedra. The framework has large channels (effective pore size: 4.8 x 4.8 A(2)) parallel to the c axis and a system of smaller channels (effective pore size: 2.5 x 3.6 A(2)) parallel to [100], [110], [010], [110], [110], and [110]. The channels are occupied by NH(4)(+) cations and H(2)O molecules. The topological structure of the uranyl molybdate framework can be described either in terms of fundamental chains of UO(7) pentagonal bipyramids and MoO(4) tetrahedra or in terms of tubular building units parallel to the c axis.  相似文献   

2.
A calorimetric and thermodynamic investigation of two alkali-metal uranyl molybdates with general composition A2[(UO2)2(MoO4)O2], where A = K and Rb, was performed. Both phases were synthesized by solid-state sintering of a mixture of potassium or rubidium nitrate, molybdenum (VI) oxide and gamma-uranium (VI) oxide at high temperatures. The synthetic products were characterised by X-ray powder diffraction and X-ray fluorescence methods. The enthalpy of formation of K2[(UO2)2(MoO4)O2] was determined using HF-solution calorimetry giving ΔfH° (T = 298 K, K2[(UO2)2(MoO4)O2], cr) = −(4018 ± 8) kJ · mol−1. The low-temperature heat capacity, Ср°, was measured using adiabatic calorimetry from T = (7 to 335) K for K2[(UO2)2(MoO4)O2] and from T = (7 to 326) K for Rb2[(UO2)2(MoO4)O2]. Using these Ср° values, the third law entropy at T = 298.15 K, S°, is calculated as (374 ± 1) J · K−1 · mol−1 for K2[(UO2)2(MoO4)O2] and (390 ± 1) J · K−1 · mol−1 for Rb2[(UO2)2(MoO4)O2]. These new experimental results, together with literature data, are used to calculate the Gibbs energy of formation, ΔfG°, for both phases giving: ΔfG° (T = 298 K, K2[(UO2)2(MoO4)O2], cr) = (−3747 ± 8) kJ · mol−1 and ΔfG° (T = 298 K, Rb2[(UO2)2(MoO4)], cr) = −3736 ± 5 kJ · mol−1. Smoothed Ср°(Т) values between 0 K and 320 K are presented, along with values for S° and the functions [H°(T)  H°(0)] and [G°(T)  H°(0)], for both phases. The stability behaviour of various solid phases and solution complexes in the (K2MoO4 + UO3 + H2O) system with and without CO2 at T = 298 K was investigated by thermodynamic model calculations using the Gibbs energy minimisation approach.  相似文献   

3.
The low-temperature heat capacity of K2MoO4 was measured by adiabatic calorimetry. The smoothed heat capacity values, entropies, reduced Gibbs energies, and enthalpies were calculated over the temperature range 0–330 K. The standard thermodynamic functions determined at 298.15 K were C p ° (298.15 K) = 143.1 ± 0.2 J/(mol K), S°(298.15 K) = 199.3 ± 0.4 J/(mol K), H°(298.15 K)-H°(0) = 28.41 ± 0.03 kJ/mol, and Φ°(298.15 K) = 104.0 ± 0.4 J/(mol K). The thermal behavior of potassium molybdate at elevated temperatures was studied by differential scanning calorimetry. The parameters of polymorphic transitions and fusion of potassium molybdate were determined.  相似文献   

4.
Crystals of K(Mg0.5Zr0.5).(MoO4)2 were grown, and the composition and crystal structure of the compound were refined in an X-ray diffraction study (CAD-4 automatic diffractometer, MoKα radiation, 475 F(hkl), R=0.022). The parameters of the trigonal unit cell are: a=5.763(1); c=7.187(1) Å,Z=1, space group P3m1. A typical feature of a glaserite-like structure is atomic arrangement in two layers: at z=0 the Mg and Zr atoms are statistically distributed in the oxygen octahedra, and at z=0.5 the K atoms are distributed inside the icosahedra. In the second layer, Mo atoms with tetrahedral environment are also distributed.  相似文献   

5.
Single crystals of the title compound have been synthesized and its crystal structure has been determined. The compound crystallizes in the monoclinic system, space group C2/c, Z = 2 (a = 5.3056, b = 12.976, c = 19.578 Å, = 92.583°, R = 0.029). A distinctive feature of the structure is lacy layers of eight-vertex Bi polyhedra and Mo tetrahedra connected to them via common vertices. me adjacent layen are linked together by ten-vertex Rb polyhedra and Li octahedra.Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences. Buryatian Institute of Natural Sciences, Siberian Branch, Russian Academy of Sciences. Translated fromZhurnal Strukturnoi Khimii, Vol. 34, No. 5, pp. 152–156, September–October, 1993.Translated by T. Yudanova  相似文献   

6.
The Tl2MoO4-Nd2(MoO4)3-Hf(MoO4)2 system was studied in the subsolidus region using X-ray powder diffraction. New triple molybdates were found to exist in this system: Tl5NdHf(MoO4)6 (5: 1: 2), TlNdHf0.5(MoO4)3 (1: 1: 1), and Tl2NdHf2(MoO4)6.5 (2: 1: 4). The first TlNd(MoO4)2 single crystals were grown from melt solutions with spontaneous nucleation. Their crystal structure was refined from X-ray diffraction data (Bruker X8 Apex automated diffractometer, MoK α radiation, 386 F(hkl), R = 0.0136). The tetragonal unit cell parameters are as follows: a = 6.3000(2) Å, c = 9.5188(5) Å, V = 377.80(3) Å3, Z = 2, ρcalcd = 5.876 g/cm3, space group P4/nnc. The structure is a framework built of NdO8 and TlO8 tetragonal antiprisms linked via shared lateral edges and alternating in the checkerboard order. Layers share oxygen vertices with MoO4 interlayer tetrahedra and are linked into the framework.  相似文献   

7.
Phosphinimine ligands (Cy3PNH) readily react with UO2Cl2(THF)3 (THF=tetrahydrofuran) to give UO2Cl2(Cy3PNH)2, which contains strong U-N interactions and exists as cis and trans isomers in the solid and solution state. Solution NMR experiments and computational analysis both support the trans form as the major isomer in solution, although the cis isomer becomes more stabilized with an increase in the dielectric constant of the solvent. Mayer bond orders, energy decomposition analysis, and examination of the molecular orbitals and total electron densities support a more covalent bonding interaction in the U-NHPCy3 bond compared with the analogous bond of the related U-OPCy3 compounds.  相似文献   

8.
9.
The subsolidus region of the ternary salt system Tl2MoO4-Fe2(MoO4)3-Hf(MoO4)2 was studied by X-ray powder diffraction. New compounds Tl5FeHf(MoO4)6 (5: 1: 2) and Tl(Fe,Hf0.5)(MoO4)3 (1: 1: 1). were found to be formed in this system. Crystals of new ternary molybdate of the composition Tl(FeHf0.5)(MoO4)3 were grown by spontaneous flux crystallization. Its composition and crystal structure were refined based on X-ray diffraction data. The mixed three-dimensional framework of the crystal structure is composed of Mo tetrahedra sharing O vertices with (Fe,Hf)O6 octahedra. The thallium atoms occupy wide channels in the framework.  相似文献   

10.
The subsolidus region of the Cs2MoO4-Bi2(MoO4)3-Zr(MoO4) system was studied by X-ray powder diffraction. Quasi-binary sections were elucidated, and triangulation performed. Triple molybdates with the component ratios 5: 1: 2 (S 1) and 2: 1: 4 (S 2) were prepared for the first time. Crystals of cesium bismuth zirconium molybdate of the 5: 1: 2 stoichiometry (Cs5BiZr(MoO4)6) were grown from fluxed melts with spontaneous nucleation. The composition and crystal structure of this triple molybdate were refined using X-ray diffraction data (collected on X8 APEX automated diffractometer, MoK α radiation, 2348 F(hkl), R = 0.0226). The trigonal unit cell parameters were as follows: a = b = 10.9569(2), c = 39.804(4) Å, V = 4138.4(4) Å3, Z = 6, space group R $ \bar 3 The subsolidus region of the Cs2MoO4-Bi2(MoO4)3-Zr(MoO4) system was studied by X-ray powder diffraction. Quasi-binary sections were elucidated, and triangulation performed. Triple molybdates with the component ratios 5: 1: 2 (S 1) and 2: 1: 4 (S 2) were prepared for the first time. Crystals of cesium bismuth zirconium molybdate of the 5: 1: 2 stoichiometry (Cs5BiZr(MoO4)6) were grown from fluxed melts with spontaneous nucleation. The composition and crystal structure of this triple molybdate were refined using X-ray diffraction data (collected on X8 APEX automated diffractometer, MoK α radiation, 2348 F(hkl), R = 0.0226). The trigonal unit cell parameters were as follows: a = b = 10.9569(2), c = 39.804(4) ?, V = 4138.4(4) ?3, Z = 6, space group R c. The mixed-metal three-dimensional framework in this structure is built of Mo tetrahedra and two sorts of (Bi,Zr)O6 octahedra. Large interstices accommodate two sorts of cesium atoms. The Bi3+ and Zr4+ cation distributions over two positions were refined during structure solution. Original Russian Text ? B.G. Bazarov, T.V. Namsaraeva, R.F. Klevtsova, A.G. Anshits, T.A. Vereshchagina, R.V. Kurbatov, L.A. Glinskaya, K.N. Fedorov, Zh.G. Bazarova, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 9, pp. 1585–1589.  相似文献   

11.
The subsolidus region of the Rb2MoO4-Er2(MoO4)3-Hf(MoO4)2 ternary salt system is studied using X-ray powder diffraction. A novel 5: 1: 2 triple molybdate, Rb5ErHf(MoO4)6, is found to form in the system. Crystals of Rb5ErHf(MoO4)6 are flux-grown under spontaneous nucleation conditions. The composition and crystal structure of Rb5ErHf(MoO4)6 are refined in a single-crystal X-ray diffraction experiment (X8 APEX diffractometer, MoK α radiation, 1753 reflections, R = 0.0183). The crystals are trigonal; a = 10.7511(1) Å, c = 38.6543(7) Å, V = 3869.31(9) Å3, d calc = 4.462 g/cm3, Z = 6, space group $R\bar 3c$ . The mixed three-dimensional framework of the structure is formed of MoO4 tetrahedra, each sharing corners with two ErO6 and HfO6 octahedra. Two types of Rb atoms occupy large cavities of the framework. The distribution of the Er3+ and Hf4+ cation over two positions is refined in the course of structure solution.  相似文献   

12.
13.
14.
15.
Crystals of K5(Mn0.5Zr1.5).(MoO4)6 were grown, and the crystal structure of this compound was refined in an X-ray diffraction study (CAD-4 automatic diffractometer, MoKα radiation, 1183 |F(hkl)|, R=0.027). The parameters of the trigonal unit cell are: a=b=10.584(1); c=37.576(3) Å; V=3645.4(3) Å3; space group R3c; dcalc=3.606 g/cm3. In the structure, the altermating Mo tetrahedra and (Mn, Zr) octahedra form a three-dimensional mixed framework whosevoids contain potassium atoms of three types. The distribution of the Mn and Zr cations in two crystallographic positions has been refined.  相似文献   

16.
Single crystals of molybdate Tl2Mg2(MoO4)3 are grown, and its crystal structure is refined in an X-ray diffraction experiment (an automated diffractometer, MoK α radiation, 914 F(hkl) reflections, R = 0.0459). The crystal are cubic with a = b = c = 10.700(1) Å, V = 1225.0(2) Å3, Z = 4, space group P213. The mixed 3D framework of the structure is built of MoO4 tetrahedra and two types of corner-sharing MgO6 octahedra. Two types of thallium atoms occupy large interstices.  相似文献   

17.
Single crystals of the title compound are obtained from a melt of U3O8, MoO3, and excess Cs2CO3 (Pt crucible, 950 °C, 12 h, cooling rate 5 °C/h).  相似文献   

18.
19.
20.
Single crystals of Li8Bi2(MoO4)7 were synthesized; the composition and crystal structure of this compound were determined from X-ray diffraction data (CAD-4 automatic diffractometer, MoKa radiation, 1767 reflections, R = 0.031). The parameters of the tetragonal unit cell are as follows: a = 21.130, c = 5.287 Å, Z = 4, space group -14. The structure of the binary molybdate is a three-dimensional mixed framework of MoO4 tetrahedra of four varieties, Bi eight-vertex potyhedra, and Li(l)O6 and Li(2)O6 octahedra. The large channels of the framework along the c axis contain MoO4 tetrahedra of the fifth variety with Li(3)O4 and Li(4)O4 tetrahedra attached to them via common vertices and forming four symmetrically related chains of pyroxene type. The structure of Li8Bi2(MoO4)7 involves structural fragments of Li3Fe(MoO4)3 and a-RbPr(MoO4)2 and is a new structural type in the class of binary molybdates and tungstates of uniand trivalent metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号