首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The experimental and theoretical researches on the radial jet of two opposed jets have been carried out in this paper. The radial velocities of opposed jets with various exit velocities, nozzle diameters and nozzle separations were measured experimentally by a hot-wire anemometer (HWA). The results show that, the normalized radial velocities are self-similar across various radial sections at r ? 1.5D and the radial velocity profiles can be described by a Gaussian distribution function. The half-width increases linearly with increasing radial distance at r ? 1.5D, and spreading rates of radial jet are about 0.121. The normalized radial velocity at impingement plane increases firstly, and then decreases with the increasing normalized radial distance. The normalized radial velocity is independent on nozzle diameter, nozzle separation and exit velocity. The maximum radial velocity at impingement plane is proportional to the exit velocity, and it is inversely proportional to the 0.551th power of the normalized nozzle separation. The position of the maximum radial velocity increases with the nozzle separation at L/D < 1, and keeps invariant at L/D ? 1.  相似文献   

2.
The present study deals with the experimental and numerical investigations of aluminum target plates impacted by blunt, ogive and hemispherical nosed steel projectiles. The projectiles were normally impacted on the target plates of 0.5, 0.71, 1, 1.5, 2, 2.5 and 3 mm thicknesses at different velocities with the help of a pneumatic gun. Effect of projectile nose shape, impact velocity and plate thickness on the deformation of the target plates was studied. Hemispherical nosed projectile caused highest global deformation (dishing) of the target plates. Ogive nosed projectiles were found to be the most efficient penetrator for the case of plates of thicknesses 0.5, 0.71, 1.0 and 1.5 mm. For the case of plates of thicknesses 2.0, 2.5 and 3.0 mm however, blunt nosed projectiles required least energy to perforate the target plates. The ballistic limit velocity of hemispherical nosed projectiles was found to be highest as compared to the other two projectiles. Finite element analysis of the problem was carried out using ABAQUS finite element code. Results of the numerical analysis were compared with the experiments and good correlation between the two was found.  相似文献   

3.
A numerical study of the alteration of a square cylinder wake using a detached downstream thin flat plate is presented. The wake is generated by a uniform flow of Reynolds number 150 based on the side length of the cylinder, D. The sensitivity of the near wake structure to the downstream position of the plate is investigated by varying the gap distance (G) along the wake centerline in the range 0  G  7D for a constant plate length of L = D. A critical gap distance is observed to occur at Gc  2.3D that indicates the existence of two flow regimes. Regime I is characterised by vortex formation occurring downstream of the gap while for regime II, formation occurs within the gap. By varying the plate length and gap distance, a condition is found where significant unsteady total lift reduction can occur. The root mean square lift reduction is limited by an unsteady stall process on the plate.  相似文献   

4.
The variations of mass concentrations of PM2.5, PM10, SO2, NO2, CO, and O3 in 31 Chinese provincial capital cities were analyzed based on data from 286 monitoring sites obtained between March 22, 2013 and March 31, 2014. By comparing the pollutant concentrations over this length of time, the characteristics of the monthly variations of mass concentrations of air pollutants were determined. We used the Pearson correlation coefficient to establish the relationship between PM2.5, PM10, and the gas pollutants. The results revealed significant differences in the concentration levels of air pollutants and in the variations between the different cities. The Pearson correlation coefficients between PMs and NO2 and SO2 were either high or moderate (PM2.5 with NO2: r = 0.256–0.688, mean r = 0.498; PM10 with NO2: r = 0.169–0.713, mean r = 0.493; PM2.5 with SO2: r = 0.232–0.693, mean r = 0.449; PM10 with SO2: r = 0.131–0.669, mean r = 0.403). The correlation between PMs and CO was diverse (PM2.5: r = 0.156–0.721, mean r = 0.437; PM10: r = 0.06–0.67, mean r = 0.380). The correlation between PMs and O3 was either weak or uncorrelated (PM2.5: r = −0.35 to 0.089, mean r = −0.164; PM10: r = −0.279 to 0.078, mean r = −0.127), except in Haikou (PM2.5: r = 0.500; PM10: r = 0.509).  相似文献   

5.
6.
This investigation had multiple goals. One goal was to obtain definitive information about the heat transfer characteristics of co-axial impinging jets, and this was achieved by measurements of the stagnation-point, surface-distribution and average heat transfer coefficients. These results are parameterized by the Reynolds number Re which ranged from 5000 to 25,000, the dimensionless separation distance between the jet exit and the impingement plate H/D (4–12), and the ratio of the inner diameters of the inner and outer pipes d/D (0–0.55). The d/D = 0 case corresponds to a single circular jet. The other major goal of this work was to quantify the velocity field of co-axial free jets (impingement plate removed). The velocity-field study included both measurements of the mean velocity and the turbulence intensity.It was found that the variation of the stagnation-point heat transfer coefficient with d/D attained a maximum at d/D = 0.55. Furthermore, the variation of the local heat transfer coefficient across the impingement surface was more peaked for d/D = 0 and became flatter with decreasing d/D. This suggests that for cooling a broad expanse of surface, co-axial jets of high d/D are preferable. On the other hand, for localized cooling, the single jet (d/D = 0) performed the best. In general, for a given Reynolds number, a co-axial jet yields higher heat transfer coefficients than a single jet. Off-axis velocity peaks were encountered for the jets with d/D = 0.105. The measurements of turbulence intensity yielded values as high as 18%.  相似文献   

7.
For axi-symmetrically notched tension bars [Dyson, B.F., Loveday, M.S., 1981, Creep Fracture in Nimonic 80A under Tri-axial Tensile Stressing, In: Ponter A.R.S., Hayhurst, D.R. (Eds.), Creep in Structures, Springer-Verlag, Berlin, pp. 406–421] show two types of damage propagation are shown: for low stress, failure propagates from the outside notch surface to the centre-line; and for high stress, failure propagates from the centre-line to the outside notch surface. The objectives of the paper are to: identify the physics of the processes controlling global failure modes; and, describe the global behaviour using physics-based constitutive equations.Two sets of constitutive equations are used to model the softening which takes place in tertiary creep of Nimonic 80A at 750 °C. Softening by multiplication of mobile dislocations is firstly combined, for low stress, with softening due to nucleation controlled creep constrained cavity growth; and secondly combined, for high stress, with softening due to continuum void growth. The Continuum Damage Mechanics, CDM, Finite Element Solver DAMAGE XX has been used to study notch creep fracture. Low stress notch behaviour is accurately predicted provided that the constitutive equations take account of the effect of stress level on creep ductility. High stress notch behaviour is accurately predicted from a normalized inverse cavity spacing d/2? = 6, and an initial normalized cavity radius rhi/? = 3.16 × 10?3, where 2? is the cavity spacing, and d is the grain size; however, the constants in the strain rate equation required recalibration against high stress notch data. A void nucleation mechanism is postulated for high stress behaviour which involves decohesion where slip bands intersect second phase grain boundary particles. Both equation sets accurately predict experimentally observed global failure modes.  相似文献   

8.
Vortex structures and heat transfer enhancement mechanism of turbulent flow over a staggered array of dimples in a narrow channel have been investigated using Large Eddy Simulation (LES), Laser Doppler Velocimetry (LDV) and pressure measurements for Reynolds numbers ReH = 6521 and ReH = 13,042.The flow and temperature fields are calculated by LES using dynamic mixed model applied both for the velocity and temperature. Simulations have been validated with experimental data obtained for smooth and dimpled channels and empiric correlations. The flow structures determined by LES inside the dimple are chaotic and consist of small eddies with a broad range of scales where coherent structures are hardly to detect. Proper Orthogonal Decomposition (POD) method is applied on resolved LES fields of pressure and velocity to identify spatial–temporal structures hidden in the random fluctuations. For both Reynolds numbers it was found that the dimple package with a depth h to diameter D ratio of h/D = 0.26 provides the maximum thermo-hydraulic performance. The heat transfer rate could be enhanced up to 201% compared to a smooth channel.  相似文献   

9.
The velocity field and the adequate shear stress corresponding to the flow of a generalized Burgers’ fluid model, between two infinite co-axial cylinders, are determined by means of Laplace and finite Hankel transforms. The motion is due to the inner cylinder that applies a time dependent torsional shear to the fluid. The solutions that have been obtained, presented in series form in terms of usual Bessel functions J1( ? ), J2( ? ), Y1( ? ) and Y2( ? ), satisfy all imposed initial and boundary conditions. Moreover, the corresponding solutions for Burgers’, Oldroyd-B, Maxwell, second grade, Newtonian fluids and large-time transient solutions for generalized Burgers’ fluid are also obtained as special cases of the present general solutions. The effect of various parameters on large-time and transient solutions of generalized Burgers’ fluid is also discussed. Furthermore, for small values of the material parameters, λ2 and λ4 or λ1, λ2, λ3 and λ4, the general solutions corresponding to generalized Burgers’ fluids are going to those for Oldroyd-B and Newtonian fluids, respectively. Finally, the influence of the pertinent parameters on the fluid motion, as well as a comparison between models, is shown by graphical illustrations.  相似文献   

10.
Uniform rhombohedral α-Fe2O3 nanoparticles, ~60 nm in size, were synthesized via a triphenylphosphine-assisted hydrothermal method. Scanning electron micrograph (SEM) and transmission electron micrograph (TEM) analyses showed that the as-synthesized rhombohedral nanoparticles were enclosed by six (1 0 4) planes. The concentration of triphenylphosphine played an important role in morphological evolution of the α-Fe2O3 nanoparticles. The as-prepared rhombohedral nanoparticles possessed remanent magnetization Mr of 2.6 × 10?3 emu/g and coercivity HC of 2.05 Oe, both lower than those of other α-Fe2O3 particles with similar size, indicating their potential applications as superparamagnetic precursor materials. Furthermore, these rhombohedral α-Fe2O3 nanoparticles exhibited good sensor capability toward H2O2 with a linear response in the concentration range of 2–20 mM.  相似文献   

11.
Temperature fluctuations occur due to thermal mixing of hot and cold streams in the T-junctions of the piping system in nuclear power plants, which may cause thermal fatigue of piping system. In this paper, three-dimensional, unsteady numerical simulations of coolant temperature fluctuations at a mixing T-junction of equal diameter pipes were performed using the large eddy simulation (LES) turbulent model. The experiments used in this paper to benchmark the simulations were performed by Hitachi Ltd. The calculated normalized mean temperatures and fluctuating temperatures are in good agreement with the measurements. The influence of the time-step ranging from 100 Hz to 1000 Hz on the numerical simulation results was explored. The simulation results indicate that all the results with different frequencies agree well with the experimental data. Finally, the attenuation of fluctuation of fluid temperature was also investigated. It is found that, drastic fluctuation occurs within the range of less than L/D = 4.0; the fluctuation of fluid temperature does not always attenuate from the pipe center to the wall due to the continuous generation of vortexes. At the top wall, the position of L/D = 1.5 has a minimum normalized mean temperature and a peak value of root-mean square temperature, whereas at the bottom wall, the position having the same characteristics is L/D = 2.0.  相似文献   

12.
The paper presents average flow visualizations and measurements, obtained with the Particle Image Velocimetry (PIV) technique, of a submerged rectangular free jet of air in the range of Reynolds numbers from Re = 35,300 to Re = 2200, where the Reynolds number is defined according to the hydraulic diameter of a rectangular slot of height H. According to the literature, just after the exit of the jet there is a zone of flow, called zone of flow establishment, containing the region of mixing fluid, at the border with the stagnant fluid, and the potential core, where velocity on the centerline maintains a value almost equal to the exit one. After this zone is present the zone of established flow or fully developed region. The goal of the paper is to show, with average PIV visualizations and measurements, that, before the zone of flow establishment is present a region of flow, never mentioned by the literature and called undisturbed region of flow, with a length, LU, which decreases with the increase of the Reynolds number. The main characteristics of the undisturbed region is the fact that the velocity profile maintains almost equal to the exit one, and can also be identified by a constant height of the average PIV visualizations, with length, LCH, or by a constant turbulence on the centerline, with length LCT. The average PIV velocity and turbulence measurements are compared to those performed with the Hot Film Anemometry (HFA) technique. The average PIV visualizations show that the region of constant height has a length LCH which increases from LCH = H at Re = 35,300 to LCH = 45H at Re = 2200. The PIV measurements on the centerline of the jet show that turbulence remains constant at the level of the exit for a length, LCT, which increases from LCT = H at Re = 35,300 to LCT = 45H at Re = 2200. The PIV measurements show that velocity remains constant at the exit level for a length, LU, which increases from LU = H at Re = 35,300 to LU = 6H at Re = 2200 and is called undisturbed region of flow. In turbulent flow the length LU is almost equal to the lengths of the regions of constant height, LCH, and constant turbulence, LCT. In laminar flow, Re = 2200, the length of the undisturbed region of flow, LU, is greater than the lengths of the regions of constant height and turbulence, LCT = LCH = 45H. The average PIV and HFA velocity measurements confirm that the length of potential core, LP, increases from LP = 45H at Re = 35,300 to LP = 78H at Re = 2200, and are compared to the previous experimental and theoretical results of the literature in the zone of mixing fluid and in the fully developed region with a good agreement.  相似文献   

13.
A phenomenological study of parabolic and spherical indentation of elastic ideally plastic materials was carried out by using precise results of finite elements calculations. The study shows that no “pseudo-Hertzian” regime occurs during spherical indentation. As soon as the yield stress of the indented material is exceeded, a deviation from the, purely elastic Hertzian contact behaviour is found. Two elastic–plastic regimes and two plastic regimes are observed for materials of very large Young modulus to Yield stress ratio, E/σy. The first elastic–plastic regime corresponds to a strong evolution of the indented plastic zone. The first plastic regime corresponds to the commonly called “fully plastic regime”, in which the average indentation pressure is constant and equal to about three times the yield stress of the indented material. In this regime, the contact depth to penetration depth ratio tends toward a constant value, i.e. hc/h = 1.47. hc/h is only constant for very low values of yield strain (σy/E lower than 5 × 10?6) when aE1/y is higher than 10,000. The second plastic regime corresponds to a decrease in the average indentation pressure and to a steeper increase in the pile-up. For materials with very large E/σy ratio, the second plastic regime appears when the value of the non-dimensional contact radius a/R is lower than 0.01. In the case of spherical and parabolic indentation, results show that the first plastic regime exists only for elastic-ideally plastic materials having an E/σy ratio higher than approximately 2.000.  相似文献   

14.
A circular water jet (Re = 1.6 × 105; We = 8.8 × 103) plunging at shallow angles (θ  12.5°) into a quiescent pool is investigated computationally and experimentally. A surprising finding from the work is that cavities, of the order of jet diameter, are formed periodically in the impact location, even though the impinging flow is smooth and completely devoid of such a periodicity. Computational prediction of these frequencies was compared with experimental findings, yielding excellent agreement. The region in the vicinity of the impact is characterized by strong churning due to splashing and formation of air cavities. Measured velocity profiles indicate a concentration of momentum beneath the free surface slightly beyond the impact location (X/Dj  14), with a subsequent shift towards the free surface further downstream of this point (X/Dj  30). This shift is due primarily to the action of buoyancy on the cavity/bubble population. Comparisons of the mean velocity profile between simulations and experiments are performed, yielding good agreement, with the exception of the relatively small churning flow region. Further downstream (X/Dj  40), the flow develops mostly due to diffusion and the location of peak velocity coincides with the free surface. In this region, the free surface acts as an adiabatic boundary and restricts momentum diffusion, causing the peak velocity to occur at the free surface.  相似文献   

15.
Pressure drops in the flow through micro-orifices and capillaries were measured for silicone oils, aqueous solutions of polyethylene glycol (PEG), and surfactant aqueous solutions. The diameter of micro-orifices ranged from 5 μm to 400 μm. The corresponding length/diameter ratio was from 4 to 0.05 and capillary diameters were 105 μm and 450 μm. The following results were obtained: silicone oils of 10?6 m2/s and 10?5 m2/s in kinematic viscosity generated a reduction of pressure drop (RPD), that is, drag reduction, similar to the RPD of water and a glycerol/water mixture reported in the previous paper by the present authors. When RPD occurred, the pressure drop (PD) of silicone oils of 10?6 m2/s and 10?5 m2/s had nearly the same magnitude. Namely, the difference in viscosity did not influence RPD. A 103 ppm aqueous solution of PEG20000 provided almost the same PD as that of PEG8000 for the 400 μm to 15 μm orifices, but a greater PD than that of PEG8000 for the 10 μm to 5 μm orifices. A non-ionic surfactant and a cationic surfactant were highly effective in RPD compared with anionic surfactants: the non-ionic and cationic surfactant solutions had PD one order of magnitude lower than that of water under some flow conditions in the concentration range from 1 ppm to 104 ppm, but the anionic surfactant solutions did not generate RPD except in the case of the smallest orifice of 5 μm in diameter. The PD of the non-ionic surfactant solution showed a steep rise at a Reynolds number (Ret) for 400 μm to 15 μm orifices. The Ret provides the relationship Ret = K/D, where D is the orifice diameter, and K is a constant of 2 × 10?2 m for the 100–20 μm orifices irrespective of liquid concentration. Capillary flow experiment revealed that the PEG, non-ionic and cationic surfactant solutions generated RPD also in a laminar flow through the capillary of 105 μm in diameter, but not in the flow through the capillary of 450 μm in diameter. In order to clarify the cause of RPD, an additional experiment was carried out by changing the orifice material from metal to acrylic resin. The result gave a different appearance of RPD, suggesting that RPD is related to an interfacial phenomenon between the liquid and wall. The large RPDs found in the present experiment are very interesting from both academic and practical viewpoints.  相似文献   

16.
A thin shell theoretical solution of two normally intersecting cylindrical shells subjected to thrust-out force and three kinds of moments transmitted through branch pipes is presented in this paper. The solutions of modified Morley equation, which can be applicable up to ρ0 = d/D  0.8 and λ = d/(DT)1/2  8 and the order of accuracy is raised to O(T/D), for the four loading cases are given. The accurate continuity conditions of generalized forces and displacements at the intersecting curve of two cylindrical shells for the four loading cases and the condition of the uniqueness of displacements are derived in this paper. The presented results are verified by experimental and numerical results successfully. They are in agreement with WRC Bulletin 297 when d/D is small.  相似文献   

17.
Coalescence of sessile droplets is studied experimentally with water–glycerin mixtures of different viscosities. Effects of viscosity on the dimensionless spreading length (Ψ) and the center-to-center distance (L) are investigated for two droplets; the first droplet (Ds) is stationary on a substrate and the second droplet (D0) landing at a center-to-center distance L from the first droplet. For a low viscosity fluid, Ψ is maximum when L approaches zero (or λ  1, where λ = 1  L/Ds), which represents a head-on collision. For a high viscosity fluid, Ψ is minimum when λ  0.6. The effect of λ on line printing for various viscosities is also examined by printing multiple droplets. We found that the larger the viscosity, the less the breakup between droplets; viscosities smaller than 60 wt% glycerin yielded line breakup. The overlap ratio of λ > 0.3 produced not a line, but a bigger droplet or puddle because of coalescence. Data obtained in this work can provide insights for the fabrication of conductive microtracks or microinterconnects in printed-electronics applications where a line breakup between droplets would lead to an electrical circuit short.  相似文献   

18.
Theoretical values of two correction factors αs = 5/6 and αt = 7/10 are established for the respective transverse shear stress resultants and stress couples within the general, dynamically and kinematically exact, six-field theory of elastic shells. These values do not depend on the shell material symmetry, geometry of the base surface, the shell thickness, or any kind of kinematic and/or dynamic constraints. The analysis is based on the complementary energy density following from the transverse shear stresses acting only on the shell cross section. The appropriate quadratic and cubic distributions of the stresses across the thickness allow one to derive the consistent constitutive equations for the transverse shear stress resultants and stress couples with αs and αt as the respective correction factors. Four numerical examples of highly non-linear shell structures illustrate the influence of different values of αs and αt on the results. In particular, some influence of αt is noticed on the placement of bifurcation points. In dynamic problem of flight of three intersecting plates analysed with Newmark-type temporal algorithm, the value of αt influences the moment at which the relative error of total energy of the system begins to grow indefinitely leading to the solution failure.  相似文献   

19.
Delineation of mini- and micro-scale channels with respect to two-phase flow has been the subject of many research papers. There is no consensus on when the small channel can be characterized as a mini-channel or micro-channel. The idea proposed by this paper is to use the normalized bubble nose radius, liquid film thickness top over bottom ratio, and bubble shape contour, which are found under normal gravity conditions in slug flow through a horizontal adiabatic channel, as the delineation criteria. The input parameters are bubble nose radius and bubble nose velocity as the characteristic length scale and characteristic velocity scale respectively. 3D numerical simulation with ANSYS FLUENT was used to obtain the necessary data. Following CFD practice, a mesh independence study and a numerical model validation against published experimental data were both conducted. Analysis of the numerical simulation results showed that channels with D  100 μm can be characterized as a micro-system, while channels with D  400 μm belong to mini-systems. The region 200 μm  D  300 μm represents a transition from the micro-scale to mini-scale.  相似文献   

20.
The variation of natural convection heat transfer from an isothermal horizontal cylinder confined between two adiabatic walls of constant height is investigated by Mach-Zehnder interferometry technique. This paper focuses on the chimney effect due to the vertical position changes of cylinder (Y) located between two walls with a constant distance of W measuring 1.5 cylinder diameter. The cylinder’s local and average Nusselt numbers are determined for ratio of vertical position to its diameter ranging from Y/D = (0 to 10), and the Rayleigh number ranging from 3.5 × 103 to 1.4 × 104. There is an optimum distance between the walls in which the Nusselt number is maximum. Results are indicated with a single correlation which gives the average Nusselt number as a function of the ratio of vertical position to cylinder diameter and the Rayleigh number. The experimental data shows that there is an optimum vertical position for the cylinder at which the Nusselt number has a maximum value at each Rayleigh number. This optimal vertical position is derived from the correlation and is presented by an equation. The value of the optimum vertical position increases as the Rayleigh number increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号