首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we report experimental densities, dynamic viscosities, and refractive indices and their derived properties of the ternary system (1-butyl-3-methylimidazolium methylsulphate + ethanol + water) at T = 298.15 K and of its binary systems 1-butyl-3-methylimidazolium methylsulphate with ethanol and with water at several temperatures T = (298.15, 313.15, 328.15) K. These physical properties have been measured over the whole composition range and at 0.1 MPa. Excess molar volumes, viscosity deviations, and excess free energy of activation for the binary systems at the abovementioned temperatures, were calculated and fitted to the Redlich–Kister equation to determine the fitting parameters and the root-mean-square deviations and for the ternary systems were calculated and fitted to Cibulka, Singh et al., and Nagata and Sakura equations. The ternary excess properties were predicted from binary contributions using geometrical solution models. Refractive indices were measured from T = 298.15 K over the whole composition range for the binary and ternary systems. The results were used to calculate deviations in the refractive index.  相似文献   

2.
Measurements of thermophysical properties (vapour pressure, density, and viscosity) of the (water + lithium bromide + potassium acetate) system LiBr:CH3COOK = 2:1 by mass ratio and the (water + lithium bromide + sodium lactate) system LiBr:CH3CH(OH)COONa = 2:1 by mass ratio were measured. The system, a possible new working fluid for absorption heat pump, consists of absorbent (LiBr + CH3COOK) or (LiBr + CH3CH(OH)COONa) and refrigerant H2O. The vapour pressures were measured in the ranges of temperature and absorbent concentration from T = (293.15 to 333.15) K and from mass fraction 0.20 to 0.50, densities and viscosities were measured from T = (293.15 to 323.15) K and from mass fraction 0.20 to 0.40. The experimental data were correlated with an Antoine-type equation. Densities and viscosities were measured in the same range of temperature and absorbent concentration as that of the vapour pressure. Regression equations for densities and viscosities were obtained with a minimum mean square error criterion.  相似文献   

3.
This paper focuses on the study of the solubility behaviour of 1-hexyl-3-methylimidazolium tetracyanoborate [HMIM][TCB] and 1-butyl-3-methylimidazolium tetracyanoborate [BMIM][TCB] in combination with methylcyclohexane and toluene as representatives for non-aromatic and aromatic components. Binary and ternary (liquid + liquid) equilibrium data were collected at three different temperatures and at atmospheric pressure (0.1 MPa). The experimental data were well-correlated with the NRTL and UNIQUAC thermodynamic models; however, the UNIQUAC model gave better predictions than the NRTL, with a root mean square error below 0.97%. The non-aromatic/aromatic selectivities of the ionic liquids make them suitable solvents to be used in extractive distillation processes.  相似文献   

4.
The distillation of close boiling mixtures may be improved by adding a proper affinity solvent, and thereby creating an extractive distillation process. An example of a close boiling mixture that may be separated by extractive distillation is the mixture ethylbenzene/styrene. The ionic liquid 1-ethyl-3-methylimidazolium thiocyanate ([EMIM][SCN]) is a promising solvent to separate ethylbenzene and styrene by extractive distillation. In this study, (vapour + liquid) equilibrium data have been measured for the binary system (styrene + [EMIM][SCN]) over the pressure range of (3 to 20) kPa and binary and ternary (liquid + liquid) equilibrium data of the system (ethylbenzene + styrene + [EMIM][SCN]) at temperatures (313.2, 333.2 and 353.2) K. Due to the low solubility of ethylbenzene in [EMIM][SCN], it was not possible to measure accurately VLE data of the binary system (ethylbenzene + [EMIM][SCN]) and of the ternary system (ethylbenzene + styrene + [EMIM][SCN]) using the ebulliometer. Because previous work showed that the LLE selectivity is a good measure for the selectivity in VLE, we determined the selectivity with LLE. The selectivity of [EMIM][SCN] to styrene in LLE measurements ranges from 2.1 at high styrene raffinate purity to 2.6 at high ethylbenzene raffinate purity. The NRTL model can properly describe the experimental results. The rRMSD in temperature, pressure and mole fraction for the binary VLE data are respectively (0.1, 0.12 and 0.13)%. The rRMSD is only 0.7% in mole fraction for the LLE data.  相似文献   

5.
The density, dynamic viscosity, and refractive index of the ternary system (ethanol + water + 1,3-dimethylimidazolium methylsulphate) at T = 298.15 K and of its binary systems 1,3-dimethylimidazolium methylsulphate with ethanol and with water at several temperatures T = (298.15, 313.15, and 328.15) K and at 0.1 MPa have been measured over the whole composition range. From these physical properties, excess molar volumes, viscosity deviations, refractive index deviations, and excess free energy of activation for the binary systems at the above mentioned temperatures, were calculated and fitted to the Redlich–Kister equation to determine the fitting parameters and the root-mean-square deviations. For the ternary system, the excess properties were calculated and fitted to Cibulka, Singh et al., and Nagata and Sakura equations. The ternary excess properties were predicted from binary contributions using geometrical solution models.  相似文献   

6.
(Liquid + liquid) equilibrium (LLE) data of (water + ethanol + dimethyl glutarate) have been determined experimentally at T=(298.15,308.15 and 318.15) K. The reliability of the experimental tie-line data was ascertained by using the Othmer and Tobias correlation. The LLE data of the ternary mixture were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

7.
(Liquid–liquid) equilibrium (LLE) data are investigated for mixtures of (water + propionic acid + oleyl alcohol) at 298.15, 308.15 and 318.15 K and atmospheric pressure. The solubility curves and the tie-line end compositions of liquid phases at equilibrium were determined, and the tie-line results were compared with the data predicted by the UNIFAC method. The phase diagrams for the ternary mixtures including both the experimental and correlated tie-lines are presented. The distribution coefficients and the selectivity factors for the immiscibility region are calculated to evaluate the effect of temperature change. The reliability of the experimental tie-lines was confirmed by using Othmer–Tobias correlation. It is concluded that oleyl alcohol may serve as an adequate solvent to extract propionic acid from its dilute aqueous solutions. The UNIFAC model correlates the LLE data for 298.15, 308.15 and 318.15 K with a root mean square deviation of 5.89, 6.46, and 6.69%, respectively, between the observed and calculated mole concentrations.  相似文献   

8.
Experimental isothermal (vapour + liquid) equilibrium (VLE) data are reported for the binary mixture containing 1-butyl-3-methylimidazolium iodide ([bmim]I) + 1-butanol at three temperatures: (353.15, 363.15, and 373.15) K, in the range of 0 to 0.22 liquid mole fraction of [bmim]I. Additionally, refractive index measurements have been performed at three temperatures: (293.15, 298.15 and 308.15) K in the whole composition range. Densities, excess molar volumes, surface tensions and surface tension deviations of the binary mixture were predicted by Lorenz–Lorentz (nD-ρ) mixing rule. Dielectric permittivities and their deviations were evaluated by known equations. (Vapour + liquid) equilibrium data were correlated with Wilson thermodynamic model while refractive index data with the 3-parameters Redlich–Kister equation by means of maximum likelihood method. For the VLE data, the real vapour phase behaviour by virial equation of state was considered. The studied mixture presents S-shaped abatement from the ideality. Refractive index deviations, surface tension deviations and dielectric permittivity deviations are positive, while excess molar volumes are negative at all temperatures and on whole composition range. The VLE data may be used in separation processes design, and the thermophysical properties as key parameters in specific applications.  相似文献   

9.
Phase diagram and (liquid + liquid) equilibrium (LLE) data for the (NaNO3 + polyethylene glycol 4000 (PEG 4000) + H2O) system have been determined experimentally at T = (288.15 and 308.15) K. The effects of temperature on the binodal curves and tie-lines have been studied and it was found that an increasing in temperature caused the expansion of two-phase region. The Chen-NRTL, modified Wilson and UNIQUAC models were used to correlate the experimental tie-line data. The results show that the quality of fitting is better with the UNIQUAC model.  相似文献   

10.
The vapor pressures of (ethanol + glycerol) and (water + glycerol) binary mixtures were measured by means of two static devices at temperatures between (273 and 353 (or 363)) K. The data were correlated with the Antoine equation. From these data, excess Gibbs free energy functions (GE) were calculated for several constant temperatures and fitted to a fourth-order Redlich–Kister equation using the Barker method. The (ethanol + glycerol) binary system exhibits positive deviations in GE where for the (water + glycerol) mixture, the GE is negative for all temperatures investigated over the whole composition. Additionally, the NRTL, UNIQUAC and Modified UNIFAC (Do) models have been used for the correlation or prediction of the total pressure.  相似文献   

11.
(Liquid + liquid) equilibrium (LLE) data for the (water + butyric acid + dodecanol) ternary system have been determined experimentally at T = (298.2, 308.2 and 318.2) K. Complete phase diagrams were obtained by determining binodal curves and tie lines. The reliability of the experimental tie lines was confirmed by using the Othmer–Tobias correlation. The UNIFAC method was used to predict the phase equilibrium in the ternary system using the interaction parameters determined from experimental data of CH3, CH2, COOH, OH and H2O functional groups. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

12.
Densities, ρ speeds of sound, u and dynamic viscosities, η of the ternary mixtures {dimethyl carbonate (DMC) + methanol + ethanol} and (dimethyl carbonate + methanol + hexane) were gathered at T = (293.15, 298.15, 308.15, and 313.15) K. From experimental data viscosity deviations, Δη of the ternary mixtures were evaluated. These results have been correlated using the Cibulka equation. The fitting parameters and the standard deviations of the ternary viscosity deviations are given. UNIFAC-VISCO group contribution method was used to predict the dynamic viscosities of the ternary mixtures at several temperatures.  相似文献   

13.
Isopiestic measurements have been carried out for the quinary system (water + methanol + ethanol + sodium bromide + ammonium bromide) with a mass ratio of water:methanol:ethanol=18:1:1 or 8:1:1 at the temperature 298.15 K. The results fit the ideal-like solution model within experimental errors.  相似文献   

14.
Density and viscosity of (water + dimethylsulphoxide) were measured precisely over the whole composition range at T = (298.15, 303.15, 308.15, 313.15, and 318.15) K. Differences between values from different authors are clarified and more reliable partial molar volumes are obtained.  相似文献   

15.
Experimental isobaric (vapor + liquid + liquid) and (vapor + liquid) equilibrium data for the ternary system {water (1) + cyclohexane (2) + heptane (3)} and the quaternary system {water (1) + ethanol (2) + cyclohexane (3) + heptane (4)} were measured at 101.3 kPa. An all-glass, dynamic recirculating still equipped with an ultrasonic homogenizer was used to determine the VLLE. The results obtained show that the system does not present quaternary azeotropes. The point-by-point method by Wisniak for testing the thermodynamic consistency of isobaric measurements was used to test the equilibrium data.  相似文献   

16.
17.
Phase diagram and (liquid + liquid) equilibrium (LLE) results for {NaClO4 + polyethylene glycol 4000 (PEG 4000) + H2O} have been determined experimentally at T = (288.15, 298.15, and 308.15) K. The Chen-NRTL, modified Wilson and UNIQUAC models were used to correlate the values for the experimental tie-lines. The results show that the quality of fitting is better with the modified Wilson model.  相似文献   

18.
The experimental densities for the binary systems of an ionic liquid and an alkanol {1-ethyl-3-methylimidazolium ethylsulfate [EMIM]+ [EtSO4]? + methanol or 1-propanol or 2-propanol} were determined at T = (298.15, 303.15, and 313.15) K. The excess molar volumes for the above systems were then calculated from the experimental density values for each temperature. The Redlich–Kister smoothing polynomial was used to fit the experimental results and the partial molar volumes were determined from the Redlich–Kister coefficients. For all the systems studied, the excess molar volume results were negative over the entire composition range for all the temperatures. The excess molar volumes were correlated with the pentic four parameter virial (PFV) equation of state (EoS) model.  相似文献   

19.
(Liquid + liquid) equilibria of 14 binary systems composed of n-hexane, n-heptane, benzene, toluene, o-xylene, m-xylene, or p-xylene and 1-ethyl-3-methylimidazolium ethylsulfate, [emim]EtSO4, or 1-butyl-3-methylimidazolium methylsulfate, [bmim]MeSO4, ionic liquids have been done in the temperature range from (293.2 to 333.2) K. The solubility of aliphatic is less than those of the aromatic hydrocarbons. In particular, the solubility of hydrocarbons in both ionic liquids increases with the temperature in the order n-heptane < n-hexane < m-xylene < p-xylene < o-xylene < toluene < benzene. Considering the high solubility of aromatics and the low solubility of aliphatic hydrocarbons as well as totally immiscibility of the ionic liquids in all hydrocarbons, these new green solvents may be used as potentials extracting solvents for the separation of aromatic and aliphatic hydrocarbons.  相似文献   

20.
Given the importance that enthalpic and entropic contributions have in the interplay between thermodynamics and self-assembly of aqueous amphiphile systems, the energetic characterisation of the system {water + 1-propoxypropan-2-ol (1-pp-2-ol)} at T = 298.15 K was made by directly measuring excess partial molar enthalpies of 1-pp-2-ol and water, over the entire composition range, at T = 298.15 K and atmospheric pressure. Derivatives of the partial molar properties with respect to the composition are used to improve the understanding of molecular interactions in the water-rich region. The present results were compared with those for the well-studied system {water + 2-butoxyethanol (nC4E1)}, the two amphiphiles being structural isomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号