首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A plane strain problem for two piezoelectric half-spaces adhered by a very thin isotropic interlayer with a crack under the action of remote mixed mode mechanical loading and electrical flux is considered. The crack is situated either at an interface or in the interlayer. It is assumed that the substrates are much stiffer than the intermediate layer. Therefore, pre-fracture zones (plastic or damage) arise at the crack continuations. Normal and shear stresses are assumed to be constant in this zones and to satisfy some material equation, which can be taken from theory or derived experimentally. Modeling the pre-fracture zones by the crack continuations with unknown cohesive stresses on their faces reduces the problem to elastic interface crack analysis leading to a Hilbert problem. This problem is solved exactly. The pre-fracture zone lengths and stresses in these zones are found from algebraical and transcendental equations. The latter are derived from the conditions of stress finiteness at the ends of pre-fracture zones and the material equations. The electrical displacement at any point of the pre-fracture zones is found in closed form as well. Particular cases of symmetrical loading and of equivalent properties of the upper and lower bimaterial components are considered. Numerical results corresponding to certain material combinations and interlayer material equations are presented and analysed. In the suggested model, any singularities connected with the crack are eliminated, i.e., all mechanical and electrical characteristics are limited in the near-crack tip region.  相似文献   

2.
A plane-strain problem for a limited permeable crack in an adhesive thin interlayer between two semi-infinite piezoelectric spaces is considered. The tensile mechanical stress and the electric displacement are applied at infinity. The interlayer is assumed to be softer than the connected materials; therefore, the zones of mechanical yielding and electric saturations can arise at the crack tips on the continuations of the crack. These zones are considered in this work. It was assumed that the length of electric saturation zones is larger than the length of mechanical yield zones. The zones of mechanical yielding are modeled by the crack continuations with normal compressive stresses applied at its faces. The electric saturation zones are modeled by segments at the crack continuations with prescribed saturated electric displacements. These electric displacements can linearly vary along the mechanical yielding zones. The problem is reduced to the Hilbert–Riemann problem of linear relationship, which is solved exactly. The equation for the determination of the yielding zones length, the expressions for the crack-opening displacement jump, electric potential jump, and J-integral is obtained in an analytical form. In case of finite size body, the finite elements method is used and the variation in the fracture mechanical parameters with respect to this size is demonstrated.  相似文献   

3.
In this paper, a mathematical strip-saturation model is proposed for a poled transversely isotropic piezoelectric plate weakened by two impermeable unequal-collinear hairline straight cracks. Remotely applied in-plane unidirectional electromechanical loads open the cracks in mode-I such that the saturation zone developed at the interior tips of cracks gets coalesced. The developed saturation zones are arrested by distributing over their rims in-plane normal cohesive electrical displacement. The problem is solved using the Stroh formalism and the complex variable technique. The expressions are derived for the stress intensity factors (SIFs), the lengths of the saturation zones developed, the crack opening displacement (COD), and the energy release rate. An illustrative numerical case study is presented for the poled PZT-5H ceramic to investigate the effect of prescribed electromechanical loads on parameters affecting crack arrest. Also, the effect of different lengths of cracks on the SIFs and the local energy release rate (LERR) has been studied. The results obtained are graphically presented and analyzed.  相似文献   

4.
A modified polarization saturation model is proposed and addressed mathematically using a complex variable approach in two-dimensional(2 D) semipermeable piezoelectric media. In this model, an existing polarization saturation(PS) model in 2D piezoelectric media is modified by considering a linearly varying saturated normal electric displacement load in place of a constant normal electric displacement load, applied on a saturated electric zone. A centre cracked infinite 2D piezoelectric domain subject to an arbitrary poling direction and in-plane electromechanical loadings is considered for the analytical and numerical studies. Here, the problem is mathematically modeled as a non-homogeneous Riemann-Hilbert problem in terms of unknown complex potential functions representing electric displacement and stress components. Having solved the Hilbert problem, the solutions to the saturated zone length, the crack opening displacement(COD), the crack opening potential(COP), and the local stress intensity factors(SIFs) are obtained in explicit forms. A numerical study is also presented for the proposed modified model, showing the effects of the saturation condition on the applied electrical loading, the saturation zone length, and the COP. The results of fracture parameters obtained from the proposed model are compared with the existing PS model subject to electrical loading, crack face conditions, and polarization angles.  相似文献   

5.
A plane problem for a tunnel electrically permeable interface crack between two semi-infinite piezoelectric spaces is studied. A remote mechanical and electrical loading is applied. Elastic displacements and potential jumps as well as stresses and electrical displacement along the interface are presented using a sectionally holomorphic vector function. It is assumed that the interface crack includes zones of crack opening and frictionless contact. The problem is reduced to a combined Dirichlet–Riemann boundary value problem which is solved analytically. From the obtained solution, simple analytical expressions are derived for all mechanical and electrical characteristics at the interface. A quite simple transcendental equation, which determines the point of separation of open and close sections of the crack, is found. For the analysis of the obtained results, the main attention is devoted to the case of compressive-shear loading. The analytical analysis and numerical results show that, even if the applied normal stress is compressive, a certain crack opening zone exists for all considered loading values provided the shear field is present. It is found that the shear stress intensity factor at the closed crack tip and the energy release rates at the both crack tips depend very slightly on the magnitude of compressive loading.  相似文献   

6.
A mathematical model of crack nucleation in a variable-thickness band (rod) under nonuniform heating is constructed. As the band (rod) is thermally loaded, pre-fracture zones are assumed to appear; these zones are modeled as regions with attenuated bonds between material particles. The presence of bonds between the pre-fracture zone faces is modeled by adhesion forces applied to the pre-fracture zone surface. Solving the problem of equilibrium of an isotropic variable-thickness band with a prefracture zone is reduced to solving a nonlinear singular integrodifferential equation with a Cauchy-type kernel, which establishes the relation between the adhesion forces in the crack-nucleation zone and the distance between the crack faces. The condition of crack nucleation in a variable-thickness band is formulated with allowance for the criterion of ultimate tension of bonds in the material.  相似文献   

7.
Two equal collinear cracks with coalesced interior electric saturation zones are analytically studied for two-dimensional(2D) arbitrary polarized semipermeable piezoelectric media based on a modified strip saturated model. The strip saturated model is modified here by varying the strip saturated constant electric displacement condition to the polynomially varying electric displacement conditions. Based on the linear, quadratic,and cubic electric displacement conditions on the inner and outer saturated zones, different modified strip saturated models are proposed and studied for two equal collinear cracks. With the Stroh formalism and the complex variable technique, these fracture problems are reduced into different types of non-homogeneous Riemann Hilbert problems in unknown generalized complex potential functions. These mathematical problems are then solved with the Riemann-Hilbert approach to obtain the stress and electric displacement components at any point of the domain. The explicit expressions for the outer saturated zone length, the crack opening potential(COP), the crack opening displacement(COD), and the local intensity factors(LIFs) are derived. A numerical study is presented for the modified strip saturated model in 2D arbitrary polarized semipermeable PZT-4 material. The obtained results are compared with those of the strip saturated model, and the effects of the polynomially varying saturation condition on the saturated zones and the applied electrical loadings are presented.  相似文献   

8.
An inplane problem for a crack moving with constant subsonic speed along the interface of two piezoelectric materials is considered. A mechanically frictionless and electrically permeable contact zone is assumed at the right crack tip whilst for the open part of the crack both electrically permeable and electrically insulated conditions are considered. In the first case a moving concentrated loading is prescribed at the crack faces and in the second case an additional electrical charge at the crack faces is prescribed as well. The main attention is devoted to electrically permeable crack faces. Introducing a moving coordinate system at the leading crack tip the corresponding inhomogeneous combined Dirichlet–Riemann problem is formulated and solved exactly for this case. All electromechanical characteristics at the interface are presented in a closed form for arbitrary contact zone lengths, and further, the transcendental equation for the determination of the real contact zone length is derived. As a particular case of the obtained solution a semi-infinite crack with a contact zone is considered. The numerical analysis performed for a certain piezoelectric bimaterial showed an essential increase of the contact zone length and the associated stress intensity factor especially for the near-critical speed region. Similar investigations have been performed for an electrically insulated crack and the same behavior of the above mentioned parameters is observed.  相似文献   

9.
A strip electric–magnetic polarization saturation (SEMPS) model is developed to study the electric and magnetic yielding effects on a crack in magnetoelectroelastic (MEE) media. In this model, the MEE medium is treated as being mechanically brittle, and electrically and magnetically ductile. Analogously to the classic Dugdale model, the electric and magnetic yielding zones in front of the crack are represented for simplicity by two strips. In the electric yielding strip the electric displacement equals the electric displacement saturation and meanwhile in the magnetic yielding zone the magnetic induction equals the magnetic induction saturation. The nonlinear analytical solution of this SEMPS model of crack in an infinite MEE medium is obtained using an integral equation approach. The equivalence between the proposed SEMPS model and the existing strip electric–magnetic breakdown (SEMB) model is demonstrated.To analyze the nonlinear fracture problem in the corresponding finite MEE media, the non-linear hybrid extended displacement discontinuity-fundamental solution (NLHEDD-FS) method is modified, and a multiple iteration approach is adapted to determine the electric and magnetic yielding zones. Comparing with the analytical solution, the applicability and effectiveness of the NLHEDD-FS method is verified. Numerical results based on the SEMPS model for a center crack in infinite and finite MEE strip are presented.  相似文献   

10.
A strip electric saturation and mechanical yielding model solution is proposed for a piezoelectric plate cut along two equal collinear semi-permeable mode-I cracks with electrical polarization reaching a saturation limit and normal stress reaching a yield stress along a line segment in front of the cracks. By using Stroh formalism and complex variable technique, we derived the analytical solution for the field quantities. Three different situations are investigated when developed electrical saturation zone is bigger/smaller or equal to the developed mechanical yield zone. Numerical results show that the effect of different electric boundary conditions on the crack opening displacement and crack opening potential drop is significant and should not be ignored. The influence of electric load displacement on the energy release rate is also investigated for PZT-4, PZT-5H and BaTiO3 ceramics, and it may assists for the correct choosing of ceramic for specific job.  相似文献   

11.
Summary An interface crack with an artificial contact zone at the right-hand side crack tip between two piezoelectric semi-infinite half-planes is considered under remote mixed-mode loading. Assuming the stresses, strains and displacements are independent of the coordinate x 2, the expression for the displacement jumps and stresses along the interface are found via a sectionally holomorphic vector function. For piezoceramics of the symmetry class 6 mm and for electrically permeable crack faces, the problem is reduced to a combined Dirichlet-Riemann boundary value problem which can be solved analytically. Further, analytical expressions for the stresses, electrical displacements, derivatives of elastic displacement jumps, stress and electrical intensity factors are found at the interface. Real contact zone lengths and the well-known oscillating solution are derived from the obtained solution as well. Analytical relationships between the fracture-mechanical parameters of various models are found, and recommendations are suggested concerning the application of numerical methods to the problem of an interface crack in the discontinuity area of a piezoelectric bimaterial. Received 16 March 1999; accepted for publication 31 May 1999  相似文献   

12.
本文对反平面III型裂纹电塑性区进行了分析。采用条带模型得到了电塑性区大小的表达式。对于电塑性区的边界条件采用了两种处理方式,一是采用机械位移连续性边界条件,另一种是假设电塑性区的切应力保持为常数的假设。其中后一种处理方式消除了电场和应力在裂纹尖端的奇异性,与实际情况相符合。两种处理方式得到了相同的电塑性区的大小的表达式,并根据两种处理方式计算了能量释放率。类比Irwin的应力松弛模型,本文采用电位移松弛模型同样得到了电塑性区的大小。将条带模型得到的结果与电位移松弛模型得到的结果进行比较发现,在小范围塑性变形条件下,两种方法所得的结果比较接近,从而说明这两种方法的有效性,得到了比较满意的结果。  相似文献   

13.
The electric-field induced stress intensity factor in a piezoelectric medium of limited electrical polarization is evaluated based on a strip-saturation model of the Dugdale-type. Particular emphasis is placed on the effect of the saturation condition on the near tip field and the stress intensity factor. To this end, the general solution is derived in terms of the (unspecified) normal electrical displacement distribution along the saturated strip. Since the saturated strip is representative of the unknown saturated zone, the normal electrical displacement may suffer discontinuity across the saturated strip. It is found that the crack-tip field and the stress intensity factors depend on the discontinuity of the normal electrical displacement across the saturated strip although this dependency disappears in some practically important cases. A crack perpendicular to the poling axis in a general poled ferroelectric is discussed in detail to illustrate the implications of the strip-saturation model for electric-field induced cracking. The results show that some discrepancies between theory and experiments, for which the classical linear piezoelectric model gives qualitatively incorrect results, can be explained clearly in terms of the stress intensity factor given by the strip-saturation model. In particular, these results are independent of the form of the saturation condition imposed on the saturated strip.  相似文献   

14.
The asymptotic problem of a semi-infinite interface crack between dissimilar electrostrictive materials that are subjected to electric loading is numerically analyzed by using the finite element method. Numerical results of electric displacement fields are obtained on the basis of the mathematical equivalence of the mode III problem and an electrostatic problem. The shape and the size of saturation zones are explored as a function of the ratio of the saturated electric displacements of dissimilar electrostrictive materials. In contrast with conventional wisdom, the ratio of the permittivities is shown to exert a negligibly small influence on electric displacement fields. For various combinations of the material properties of dissimilar electrostrictive materials, stress fields and stress intensity factors are systemically calculated by using the numerical results of electric displacement fields. The effects of the electric, elastic, and electrostrictive properties on stress intensity factors are demonstrated.  相似文献   

15.
A general case of proportional loading with a complex stress state of the material in the pre-fracture zone, which is typical for polycrystalline solids with plastic deformation, is considered. A sufficient criterion of fracture is proposed for the case of a complex stress state with non-proportional deformation of the material in the pre-fracture zone. Critical parameters of fracture (pre-fracture zone length and load) for cracks propagating in quasi-brittle materials are obtained with the use of a modified Leonov-Panasyuk-Dugdale model. The pre-fracture zone width is determined by solving the problem of the plasticity theory in the vicinity of the crack tip. The proposed modification of the Leonov-Panasyuk-Dugdale model makes it possible to estimate the critical opening of the crack and the critical displacement of the crack flanks. Inequalities that describe different mechanisms of material fracture under proportional loading (predominantly shear fracture mechanism and fracture mechanism through cleavage) are derived.  相似文献   

16.
An interface crack of a finite length moving with a constant subsonic speed v along an interface of two semi-infinite piezoelectric spaces is considered. It is assumed that the bimaterial compound is loaded by a remote mixed mode mechanical loading and a thermoelectrical field and that a frictionless contact zone arises at the leading crack tip. Electrically permeable and electrically insulated cases of the open part of the crack are involved into the consideration. By introducing a moving coordinate system at the crack tip the problem is reduced to a combined Dirichlet–Riemann boundary value problem which is solved exactly. For both cases of the electrical conditions the transcendental equations are obtained for the determination of the real contact zone length, and moreover, the associated closed form asymptotic formulas are found for small values of this parameter. Variations of the contact zone length and the stress intensity factor with respect to the crack speed and the loading have been investigated both for electrically permeable and electrically insulated cases.  相似文献   

17.
李梦涵  吴琼  万永平 《力学季刊》2021,42(3):538-549
本文利用Hankel 变换及Copson 求解方法,得到了在无穷远处磁荷载以及对称力荷载作用下的无限大压磁材料中,硬币型裂纹在裂纹尖端含有环状力磁双屈服区情况下的相关解析解.本文考虑了磁屈服区尺寸小于、大于、等于力屈服区尺寸的三种情况.结果表明:屈服区尺寸不仅与外荷载及材料常数相关,更与力磁屈服区尺寸的相对大小有关;其中,较大尺寸的屈服区仅受同性质单一荷载影响,与材料常数无关;而较小尺寸屈服区受力磁两荷载与材料常数共同影响;裂纹张开位移、磁势跳变均沿裂纹面径向增大而减小;裂尖张开位移、裂尖磁势跳变与材料常数相关,且随外荷载增大而增大.  相似文献   

18.
This paper constitutes the second part of a study of interface cracks with contact zones in thermopiezoelectrical bimaterials, and it is concerned with the case of an electrically impermeable interface crack. The principal physical peculiarity of this case in comparison with an impermeable interface crack is connected with the dependencies of the contact zone length and the fracture mechanical parameters on the prescribed electrical flux, and in a mathematical sense the main peculiarity is concerned with the reduction of the problem in question to the joint solution of inhomogeneous combined Dirichlet–Riemann and Hilbert boundary value problems. The exact analytical solutions of the mentioned problems have been found for an arbitrary contact zone length, and the required thermal, mechanical and electrical characteristics at the interface as well as the associated fracture mechanical parameters at the corresponding crack tips are presented. The transcendental equations for the determination of the real contact zone length have been obtained for a general case and for a small contact zone length in an especially simple form. Using the admissible directions of the heat and the electrical fluxes defined in this paper as well, the dependencies of the real contact zone length and the associated fracture and electrical intensity factors on the intensities of the thermal and electrical fluxes are presented in tables and associated diagrams.  相似文献   

19.
For a crack in a magnetoelectroelastic plane under the electrically and magnetically semi-permeable boundary condition, we derive the non-linear analytical solution of the strip electric–magnetic polarization saturation (EMPS) model. Using the extended dislocation theory and integral equation method, we obtain the electric and magnetic yielding zones, as well as the field intensity factor and local J-integral. Adapting an iterative method, numerical examples were performed to analyze the effect of different boundary conditions and the electric–magnetic saturated properties on the electric displacement and magnetic induction in the crack cavity, electric and magnetic yielding zones, stress intensity factor and local J-integral.  相似文献   

20.
Summary A boundary value problem for two semi-infinite anisotropic spaces with mixed boundary conditions at the interface is considered. Assuming that the displacements are independent of the coordinate x 3, stresses and derivatives of displacement jumps are expressed via a sectionally holomorphic vector function. By means of these relations the problem for an interface crack with an artificial contact zone in an orthotropic bimaterial is reduced to a combined Dirichlet-Riemann problem which is solved analytically. As a particular case of this solution, the contact zone model (in Comninou's sense) is derived. A simple transcendental equation and an asymptotic formula for the determination of the real contact zone length are obtained. The classical interface crack model with oscillating singularities at the crack tips is derived from the obtained solution as well. Analytical relations between fracture mechanical parameters of different models are found, and recommendations concerning their implementation are given. The dependencies of the contact zone lengths on material properties and external load coefficients are illustrated in graphical form. The practical applicability of the obtained results is demonstrated by means of a FEM analysis of a finite-sized orthotropic bimaterial with an interface crack. Received 19 October 1998; accepted for publication 13 November 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号