首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The viscosity B-coefficients of mono-, di-, tri-saccharides and the derivatives (methyl glycosides) in mB = (0.5, 1.0, 2.0, and 3.0) mol · kg−1 aqueous solutions of magnesium chloride have been determined from viscosity data using the Jones–Dole equation at T = (288.15, 298.15, 308.15, and 318.15) K. The viscosity B-coefficients of transfer (ΔtB), the temperature derivatives of B-coefficients (dB/dT), pair and triplet viscometric interaction coefficients (ηAB, ηABB) have been determined. The viscosity B-coefficients data of systems studied in water have been reported earlier. The results have been interpreted in light of the solute–solute and solute–solvent interactions occurring in these systems. The comparison of results has been made with those reported in the presence of potassium chloride, ammonium sulphate, and sodium sulphate.  相似文献   

2.
The Jones–Dole viscosity B-coefficients for various mono-, di-, and tri-saccharides in water and in (0.5, 1.0, 2.0, and 3.0) mol · kg?1 aqueous solutions of sodium acetate have been determined at different temperatures, T = (288.15, 298.15, 308.15, and 318.15) K from viscosity data. Densities used to determine viscosities have been reported earlier. The viscosity B-coefficients of transfer, ΔtB, has been estimated for the transfer of saccharides from water to aqueous sodium acetate solutions. The positive ΔtB values were obtained in all cases and their magnitudes increase with the increase in concentration of sodium acetate. Pair, ηAB and higher order, ηABB viscometric interaction coefficients (using McMillan–Mayer theory), and dB/dT coefficients have also been determined. Activation Gibbs free energies and other related thermodynamic activation parameters of viscous flow have been determined using Feakin’s transition-state theory. These parameters have been discussed in terms of solute–solute and solute–solvent interactions occurring in these solutions.  相似文献   

3.
《Fluid Phase Equilibria》2005,227(1):57-70
Viscosities of nine (1.5, 3, 5, 7, 10, 15, 20, 23, and 26) mass% of aqueous Na2SO4 solutions have been measured in the liquid phase with a capillary flow technique. Measurements were made at five isobars 0.1, 10, 20, 30, and 40 MPa. The range of temperatures was from 298.15 to 573.5 K. The total uncertainty of viscosity, pressure, temperature, and concentration measurements was estimated to be less than 1.5%, 0.05%, 15 mK, and 0.015%, respectively. The reliability and accuracy of the experimental method was confirmed with measurements on pure water for four selected isobars 5, 10, 20, and 40 MPa and at temperatures between 296.7 and 573.7 K. The experimental and calculated values from IAPWS (International Association for the Properties of Water and Steam) formulation for the viscosity of pure water show excellent agreement within their experimental uncertainty (AAD = 0.41%). The temperature, pressure, and concentration dependences of the relative viscosity (η/η0) where η0 is the viscosity of pure water are studied. The values of the viscosity A-, B-, and D-coefficients of the extended Jones–Dole equation for the relative viscosity (η/η0) of aqueous Na2SO4 solutions as a function of temperature are studied. The maximum of the B-coefficient near the 323 K isotherm has been found. The behavior of the concentration dependence of the relative viscosity of aqueous Na2SO4 solutions is discussed in terms of the modern theory of transport phenomena in electrolyte solutions. The derived values of the viscosity A- and B-coefficients were compared with the results predicted by Falkenhagen–Dole theory of electrolyte solutions and calculated with the ionic B-coefficient data. Different theoretical models for the viscosity of electrolyte solutions were stringently tested with new accurate measurements on aqueous Na2SO4. The quality and predictive capability of the various models was studied. The measured values of viscosity were directly compared with the data reported in the literature by other authors.  相似文献   

4.
Viscosity of nine aqueous Ni(NO3)2 solutions (0.050, 0.153, 0.218, 0.288, 0.608, 0.951, 1.368, 1.824, and 2.246) mol · kg−1 was measured in the temperature range from (297 to 475) K and at pressures (0.1, 10, 20, and 30) MPa. The measurements were carried out with a capillary flow technique. The total experimental uncertainty of viscosity, pressure, temperature, and composition measurements were estimated to be less than 1.6%, 0.05%, 15 mK, and 0.02%, respectively. All experimental and derived results are compared with experimental and calculated values reported in the literature. Extrapolation of the solution viscosity measurements to zero concentration (pure water values) for the given temperature and pressure are in excellent agreement (average absolute deviation, AAD = 0.13%) with the values of pure water viscosity from IAPWS formulation [J. Kestin, J.V. Sengers, B. Kamgar-Parsi, J.M.H. Levelt Sengers, J. Phys. Chem. Ref. Data 13 (1984) 175–189]. The viscosity data for the solutions as a function of concentration have been interpreted in terms of the extended Jones–Dole equation for strong electrolytes. The values of viscosity A-, B-, and D-coefficients of the extended Jones–Dole equation for the relative viscosity (η/η0) of aqueous Ni(NO3)2 solutions as a function of temperature are studied. The derived values of the viscosity A- and B-coefficients were compared with the results predicted by Falkenhagen–Dole theory (limiting law) of electrolyte solutions and the values calculated with the ionic B-coefficient data. The measured values of viscosity for the solutions were also used to calculate the effective rigid molar volumes in the extended Einstein relation for the relative viscosity (η/η0).  相似文献   

5.
The experimental data of density (ρ) and sound velocity (u) in the temperature range (275.15 to 293.15) K have been obtained for the systems (dioxane + water), (dimethylformamide + water), (tetrahydrofuran + water), and (acetonitrile + water). The specific heat (Cp) data for the above systems have been obtained at T = 279.15 K. The data obtained are used to calculate the derived parameters of adiabatic compressibility (βS), at T = 275.15 K to T = 283.15 K, isothermal compressibility (βT), and internal pressure (Pi) at T = 279.15 K for different concentrations. The solute properties: apparent molar volume (ϕV), apparent molar expansivity (ϕE), and apparent molar compressibility (ϕKS) have been studied and the limiting values for these properties are reported. The variation in apparent molar properties with concentration and the corresponding temperature and pressure effects are discussed in terms of hydrophobic hydration (–H bonding interaction) and hydrophobic interaction (non-polar group solute–solute association in water). It is noted that the internal pressure of solutions is quite insensitive in the region of solute–solute association, while its variation with concentration in the dilute region is sensitive in contrast to the aqueous alcohol solutions. The molecular interactions also exhibit individualistic behaviour and are much dependent on structural alterations in water structure.  相似文献   

6.
The reaction of [Cp1IrCl2]2 (Cp* = η5 ? C5Me5) with the tridentate 3-thiapentane-1,5-dithiolate ligand, S(CH2CH2S?)2 (tpdt), led to the formation of [Cp1Ir(η3 ? tpdt)] (1) in 81% isolated yield. Subsequent reactions of 1 with [Cp1IrCl2]2 in 2:1 and 1:1 molar equiv ratios resulted in the formation of [Cp1Ir(μ ? η2:η3 ? tpdt)Cp1IrCl][PF6] (2) and [Cp1Irμ ? η2:η3 ? tpdt)Cp1IrCl][Cp1IrCl3] (3) in 86 and 79% yields, respectively, based on 1, whereas the reactions of 1 with [(COD)IrCl]2 (COD = 1,5-cyclooctadiene) in 2:1 and 1:1 molar equiv ratios resulted in the formation of the homo-bimetallic derivatives Cp1Ir(μ ? η1:η3 ? tpdt)(COD)IrCl (4) (92% yield) and [Cp1Ir(μ ? η2:η3 ? tpdt)(COD)Ir] [(COD)IrCl2] (5) (82% yield). Reactions between 1 and [(COD)RhCl]2, yielded the hetero-bimetallic derivatives Cp1Ir(μ ? η1:η3 ? tpdt)(COD)RhCl (6) and [Cp1Ir(μ ? η2:η3 ? tpdt)(COD)Rh][(COD)RhCl2] (7), in 92 and 93% yields, respectively. The reaction of 1 with methyl iodide gave mono-methylated derivative [Cp1Ir(η3-C4H8S3Me)]I (8) (93% yield). All these compounds have been comprehensively characterized.  相似文献   

7.
The reaction of [Cp1IrCl2]2 (Cp* = η5  C5Me5) with the tridentate 3-thiapentane-1,5-dithiolate ligand, S(CH2CH2S)2 (tpdt), led to the formation of [Cp1Ir(η3  tpdt)] (1) in 81% isolated yield. Subsequent reactions of 1 with [Cp1IrCl2]2 in 2:1 and 1:1 molar equiv ratios resulted in the formation of [Cp1Ir(μ  η2:η3  tpdt)Cp1IrCl][PF6] (2) and [Cp1Irμ  η2:η3  tpdt)Cp1IrCl][Cp1IrCl3] (3) in 86 and 79% yields, respectively, based on 1, whereas the reactions of 1 with [(COD)IrCl]2 (COD = 1,5-cyclooctadiene) in 2:1 and 1:1 molar equiv ratios resulted in the formation of the homo-bimetallic derivatives Cp1Ir(μ  η1:η3  tpdt)(COD)IrCl (4) (92% yield) and [Cp1Ir(μ  η2:η3  tpdt)(COD)Ir] [(COD)IrCl2] (5) (82% yield). Reactions between 1 and [(COD)RhCl]2, yielded the hetero-bimetallic derivatives Cp1Ir(μ  η1:η3  tpdt)(COD)RhCl (6) and [Cp1Ir(μ  η2:η3  tpdt)(COD)Rh][(COD)RhCl2] (7), in 92 and 93% yields, respectively. The reaction of 1 with methyl iodide gave mono-methylated derivative [Cp1Ir(η3-C4H8S3Me)]I (8) (93% yield). All these compounds have been comprehensively characterized.  相似文献   

8.
The reactions of [(η7-C7H7)Hf(η5-C5H5)] (1b) with the two-electron donor ligands tert-butyl isocyanide (tBuNC), 2,6-dimethylphenyl isocyanide (XyNC), 1,3,4,5-tetramethylimidazolin-2-ylidene (IMe) and trimethylphosphine (PMe3) are reported. The 1:1 complexes [(η7-C7H7)Hf(η5-C5H5)L] (2b, L = tBuNC; 3b, L = XyNC; 4b, L = IMe, 5b, L = PMe3) have been isolated in crystalline form, and their molecular structures have been determined by X-ray diffraction analyses. The stabilities of these hafnium complexes were probed via spectroscopic and theoretical methods, and the results were compared to those previously reported for the corresponding zirconium complexes derived from [(η7-C7H7)Zr(η5-C5H5)] (1a). The X-ray crystal structure of the PMe3 adduct [(η7-C7H7)Zr(η5-C5H5)(PMe3)] (5a) was also established.  相似文献   

9.
Diels-Alder reaction of (η5-cyclopentadienyl)M(CO)x1-N-maleimidato) complexes (M = Fe, Mo, W, x = 2 or 3) with cyclopentadiene has been studied. The observed order of reactivity was: N-ethylmaleimide > W complex > Mo complex > Fe complex. The X-ray structures of the adducts have been determined for M = W and Fe. DFT calculations on the starting complexes have been performed to explain the observed reactivity order.  相似文献   

10.
《Vibrational Spectroscopy》2007,43(2):405-414
The catena-poly[{aqua(η2-indole-3-propionato-O,O′)zinc}-η2-:-μ-indole-3-propionato-O,O′:-O], [Zn(I3PA)2(H2O)]n was prepared and characterized by infrared spectroscopy and X-ray structure determination. The crystals are monoclinic, space group Pc, with a = 21.380(2), b = 5.9076(7), c = 8.1215(9) Å, V = 1020.2(2) Å3 and Z = 2. The central zinc atom shows the coordination distorted from ideal octahedral. Each zinc centre is coordinated by two oxygen atoms of the bidentate chelating indole-3-propionato (I3PA), two oxygen atoms tridentate chelating-bridging I3PA, water molecule and one oxygen atom tridentate chelating-bridging I3PA from an adjacent [Zn(I3PA)2(H2O)] unit. The infrared spectrum of [Zn(I3PA)2(H2O)]n in the solid state is supported by X-ray analysis. The theoretical wavenumbers and infrared intensities have been calculated by the density functional methods (B3LYP and mPW1PW) with the 6-311++G(d,p)/LanL2DZ basis sets. The theoretical wavenumbers, infrared intensities show a good agreement with experimental data. Detailed band assignment has been made on the basis of the calculated potential energy distribution (PED).  相似文献   

11.
The heterometallic cluster complexes {(p-Cymene)Ru[S2C2(B10H10)]}Mo(CO)2{(CO)3Ru[S2C2(B10H10)]} (2) and {(p-Cymene)Ru[Se2C2(B10H10)]}2Mo(CO)2 (3) (p-Cymene = η6-4-isopropyl-toluene) have been synthesized from the reactions of 16-electron half-sandwich ruthenium 1,2-dichalcogenolate carborane complexes (p-Cymene)Ru[E2C2(B10H10)] (E = S(1a), Se(1b)) with Mo(CO)3(Py)3 in the presence of BF3 · Et2O. The complexes of 2 and 3 were characterized by elemental analysis and IR, NMR spectra. The molecular structure of 2 has been characterized by single-crystal X-ray diffraction analysis. Complex 2 is unsymmetrical and the two Ru–Mo single bonds (2.7893(14), 2.8189(13) Å) are each supported by a symmetrically bridging o-carborane-1,2-dithiolato ligand.  相似文献   

12.
Partial molar heat capacities (Cop,2,m) and volumes (Vo2,m) of seven monosaccharides, namely, d(−)-ribose, d(−)-arabinose, d(+)-xylose, d(+)-glucose, d(+)-mannose, d(+)-galactose, and d(−)-fructose; five disaccharides, namely, sucrose, d(+)-cellobiose, d(+)-maltose monohydrate, d(+)-lactose monohydrate, d(+)-trehalose dihydrate, and one trisaccharide, d(+)-raffinose pentahydrate, have been determined in NaCl(aq), m = (1.0, 2.0, and 3.0) mol·kg−1 at T=298.15 K from volumic heat capacity and density measurements employing a Picker flow microcalorimeter and a vibrating-tube densimeter, respectively. These data were combined with the earlier reported Cop,2,m and Vo2,m values in water to calculate the corresponding partial molar properties of transfer (ΔtrCop,2,m and ΔtrVo2,m) from water to aqueous sodium chloride solutions at infinite dilution. These transfer parameters are positive, and the values increase with the concentration of sodium chloride for all the saccharides. Transfer parameters have been discussed in terms of solute-cosolute interactions on the basis of a cosphere overlap model. Pair and higher-order interaction coefficients have also been calculated from transfer parameters.  相似文献   

13.
Density ρ, viscosity η, and refractive index nD, values for (tetradecane + benzene, + toluene, + chlorobenzene, + bromobenzene, + anisole) binary mixtures over the entire range of mole fraction have been measured at temperatures (298.15, 303.15, and 308.15) K at atmospheric pressure. The speed of sound u has been measured at T = 298.15 K only. Using these data, excess molar volume VE, deviations in viscosity Δη, Lorentz–Lorenz molar refraction ΔR, speed of sound Δu, and isentropic compressibility Δks have been calculated. These results have been fitted to the Redlich and Kister polynomial equation to estimate the binary interaction parameters and standard deviations. Excess molar volumes have exhibited both positive and negative trends in many mixtures, depending upon the nature of the second component of the mixture. For the (tetradecane + chlorobenzene) binary mixture, an incipient inversion has been observed. Calculated thermodynamic quantities have been discussed in terms of intermolecular interactions between mixing components.  相似文献   

14.
Viscosities and refractive indices have been determined for (water + 1-butyl-3-methylimidazolium tetrafluoroborate) and (water + 1-butyl-2,3-dimethylimidazolium tetrafluoroborate) mixtures at 298.15 K, over the whole composition range. The refractive indices were compared with the predictions of the Lorentz–Lorenz, Wiener, and Gladstone–Dale equations. Viscosity deviations (Δη) and refractive index deviations (ΔnD) have been calculated and fitted to the Redlich–Kister polynomial equations. ΔnD are positive whereas Δη are negative over the entire mixture composition for the two salts. The influence of the structure of imidazolium cation on the above physicochemical properties was discussed.  相似文献   

15.
The densities at T = (293.15, 298.15, 303.15, 308.15, 310.15, and 313.15) K and sound velocities at T = (298.15 and 310.15) K have been measured for pentaerythritol in pure water and in (1, 5, and 10) wt% aqueous solutions of sodium and magnesium chloride. From these data apparent molar volumes, VΦ, and the apparent molar isenotropic compressibilities, KS,Φ, of the polyol have been determined. The limiting apparent molar quantities and corresponding transfer parameters were also obtained and discussed in terms of various solute–solvent and solute–cosolute interactions.  相似文献   

16.
The enthalpies of solution and solvation of ethylene oxide oligomers CH3O(CH2CH2O)nCH3 (n = 1 to 4) in methanol and chloroform have been determined from calorimetric measurements at T = 298.15 K. The enthalpic coefficients of pairwise solute–solute interaction for methanol solutions have been calculated. The enthalpic characteristics of the oligomers in methanol, chloroform, water and tetrachloromethane have been compared. The hydrogen bonding of the oligomers with chloroform and water molecules is exhibited in the values of solvation enthalpy and coefficient of solute–solute interaction. This effect is not observed for methanol solvent. The thermochemical data evidence an existence of multi-centred hydrogen bonds in associates of polyethers with the solvent molecules. Enthalpies of hydrogen bonding of the oligomers with chloroform and water have been estimated. The additivity scheme has been developed to describe the enthalpies of solvation of ethylene oxide oligomers, unbranched monoethers and n-alkanes in chloroform, methanol, water, and tetrachloromethane. The correction parameters for contribution of repeated polar groups and correction term for methoxy-compounds have been introduced. The obtained group contributions permit to describe the enthalpies of solvation of unbranched monoethers and ethylene oxide oligomers in the solvents with standard deviation up to 0.6 kJ · mol−1. The values of group contributions and corrections are strongly influenced by solvent properties.  相似文献   

17.
The tert-butyl alcohol (TBA) and dimethyl sulfoxide (DMSO) are two small molecules geometrically very similar, but having different polar groups. Taking into account the intermolecular interactions in the TBA/H2O and DMSO/H2O systems, especially in the water-rich region of concentration, the ultrasonic speeds (high accuracy resonance method at the frequency 7.5 MHz) and densities in pseudo-binary mixtures of the system: (TBA + H2O + DMSO) with the ratio (TBA + DMSO)/H2O = 1/25 have been measured. From these data, various thermodynamical parameters such as adiabatic compressibility, molar volume, thermal expansivity, and the deviation from reference system have been calculated. In addition, the isobaric molar heat capacity to convert adiabatic compressibility to the isothermal one has been measured. All these parameters have been discussed to explain solute–solvent and solute–solute interactions, especially the effect of the complexation process between TBA and DMSO molecules. The composition dependence of these deviations functions was interpreted in the light of the mixing schemes in the aqueous solutions of TBA and DMSO.  相似文献   

18.
Water activities of aqueous electrolyte solutions of HCl(aq), LiCl(aq), NaCl(aq), KCl(aq), CsCl(aq), NH4Cl(aq), MgCl2(aq), CaCl2(aq), and BaCl2(aq) have been determined at T =  298.15 K by the hygrometric method, and at molalities ranging from 0.2 mol · kg  1to saturation. From measurements of droplets diameters of reference NaCl(aq) or LiCl(aq), the dependence of relative humidity on solute concentration was determined. The data on the relative humidities allow the deduction of water activities and the osmotic coefficients at different molalities. Osmotic coefficient data have been described by the ion interaction model of Pitzer. The ion interaction parameters were also determined for each of the studied salts. With these parameters, the solute activity coefficients can be predicted. Our present results have been compared with reported thermodynamic data.  相似文献   

19.
A new set of molar heat capacity data for aqueous {2-amino-2-hydroxymethyl-1,3-propanediol (TRIS) + glycol} at (30 to 80) °C and different concentrations (4% to 16% by weight TRIS or 56% to 44% by weight water, in a fixed amount of glycol – 40% by weight) were gathered via reliable measurement method and are presented in this report. The glycols considered were diethylene glycol (DEG), triethylene glycol (TEG), tetraethylene glycol (T4EG), propylene glycol (PG), dipropylene glycol (DPG), and tripropylene glycol (TPG). The 198 data points gathered fit the equation, Cp = Cp,a + B1m + B2m2 + B3m3, where Cp and Cp,a are the molar heat capacities of the (TRIS + glycol + water) and (water + glycol) systems, respectively, Bi the temperature-dependent parameters, and m the mole TRIS per kilogram (glycol + water). The overall average absolute deviation (AAD) of the experimental data from the corresponding values calculated from the correlation equation was 0.07%.  相似文献   

20.
The dilution enthalpies of four derivatives of monosaccharides, namely 2-deoxy-d-glucose (2-DGlu), N-acetyl-d-glucosamine (GluNAc), 2-deoxy-d-galactose (2-DGal) and N-acetyl-d-galactosamine (GalNAc), in aqueous NaCl solutions of various molalities (b = 0–3.0 mol · kg−1) have been determined respectively at T = 298.15 K by isothermal titration calorimetry (MicroCal ITC200). The corresponding values of enthalpic pairwise self-interaction coefficients (h2) have been calculated according to the McMillan–Mayer theory. It was found that across the range studied of ionic strength (I) or molality (b = I), the h2 coefficients are all positive, in the order h2 (GluNAc) > h2 (GalNAc) > h2 (2-DGlu) > h2 (2-DGal), and decrease gradually after increasing first up to a maximum at b  1.5 mol · kg−1. The effects of ionic strength (I) on the trends of h2 have been discussed from the point of view of complex (solute + solute) and (solute + solvent) interactions in solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号