首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper considers the multi-field coupling in magneroelectroelastic composite materials consisting of the inclusion and the matrix are magnetoelectroelastic materials. The mechanical,electric and magnetic fields around an elliptical cylinder inclusion are formulated by complex potentials. Inside the inclusion,the strain,electric and magnetic fields are found to be uniform and vary with the shape of the ellipse. When the inclusion is reduced to a crack,along the interface,the strain,electric field strength and magnetic field strength equal the corresponding remote ones,which can be used as the boundary condition. Special cases,such as a rigid and permeable inclusion,a soft and impermeable inclusion,a line inclusion and a crack problem are discussed in detail.  相似文献   

2.
The solution for an elliptical cavity in an infinite two-dimensional magnetoelectroelastic medium subject to remotely uniformly applied combined mechanical–electric–magnetic loadings is obtained by using the Stroh formalism and the exact boundary conditions along the surface of the cavity. By letting the minor-axis of the cavity to zero the solution for a crack is deduced. A self-consistent method is proposed to calculate the real crack opening under the combined mechanical–electric–magnetic loadings. The method requires that the crack opening is the minor-axis of the elliptical opening profile. Beside the real crack solution, four different extreme models, i.e., the impermeable crack, permeable crack, electrically impermeable and magnetically permeable crack and electrically permeable and magnetically impermeable crack, are discussed. An expression of the strain energy density factor is derived. Numerical results of the strain energy density at the crack tip are given for a BaTiO3–CoFe2O4 composite with the piezoelectric BaTiO3 material being the inclusion and the magnetostrictive CoFe2O4 material being the matrix. The effects of the proportion of the two phases, permeability of the crack to electric and magnetic fields, the electric and magnetic loadings on the strain energy density factor are discussed.  相似文献   

3.
The hyper-singular boundary integral equation method of crack analysis in three-dimensional transversely isotropic magnetoelectroelastic media is proposed. Based on the fundamental solutions or Green’s functions of three-dimensional transversely isotropic magnetoelectroelastic media and the corresponding Somigliana identity, the boundary integral equations for a planar crack of arbitrary shape in the plane of isotropy are obtained in terms of the extended displacement discontinuities across crack faces. The extended displacement discontinuities include the displacement discontinuities, the electric potential discontinuity and the magnetic potential discontinuity, and correspondingly the extended tractions on crack face represent the conventional tractions, the electric displacement and the magnetic induction boundary values. The near crack tip fields and the intensity factors in terms of the extended displacement discontinuities are derived by boundary integral equation approach. A solution method is proposed by use of the analogy between the boundary integral equations of the magnetoelectroelastic media and the purely elastic materials. The influence of different electric and magnetic boundary conditions, i.e., electrically and magnetically impermeable and permeable conditions, electrically impermeable and magnetically permeable condition, and electrically permeable and magnetically impermeable condition, on the solutions is studied. The crack opening model is proposed to consider the real crack opening and the electric and magnetic fields in the crack cavity under combined mechanical-electric-magnetic loadings. An iteration approach is presented for the solution of the non-linear model. The exact solution is obtained for the case of uniformly applied loadings on the crack faces. Numerical results for a square crack under different electric and magnetic boundary conditions are displayed to demonstrate the proposed method.  相似文献   

4.
The dynamic response of an interfacial crack between two dissimilar magnetoelectroelastic layers is investigated under magnetic, electrical and mechanical impact loadings. Four kinds of ideal crack-face assumptions, i.e., magnetoelectrically impermeable (Case 1), magnetically impermeable and electrically permeable (Case 2), magnetically permeable and electrically impermeable (Case 3) and magnetoelectrically permeable (Case 4), are adopted separately. The dynamic field intensity factors and energy release rates are derived. The effects of loading combinations and crack configurations especially for the former on the dynamic response are examined according to energy release rate criterion. The numerical results show that, among others, a negative magnetic (or electrical) loading is generally prone to inhibit the crack extension rather than a positive one for a magnetically (or electrically) impermeable interfacial crack. Results presented in this paper should have potential applications to the design of multilayered magnetoelectroelastic structures.  相似文献   

5.
In this paper, we developed a Stroh-type formalism for anti-plane deformation and then investigated the fracture mechanics for an elliptical cavity in a magnetoelectroelastic solid under remotely uniform in-plane electromagnetic and/or anti-plane mechanical loading, which allowed us to take the electromagnetic field inside the cavity into account. Reducing the cavity into a crack, we had explicit solutions in closed forms for a mode III crack, which included the extreme cases for an impermeable crack and a permeable crack. The results were illustrated with plots, showing that in the absence of mechanical loads, an applied electric or magnetic field, positive or negative, always tended to close the crack. On the other hand, in the presence of a mechanical load, a negative electric or magnetic field retarded crack growth, while a positive field could either enhance or retard crack propagation, depending on the strengths of the applied electric/magnetic fields and the level of the mechanical load as well. In other words, the effect of electric/magnetic fields on the fracture behavior is mechanical load-dependent.  相似文献   

6.
Dynamic analysis of two collinear electro-magnetically dielectric cracks in a piezoelectromagnetic material is made under in-plane magneto-electro-mechanical impacts. Generalized semi-permeable crack-face boundary conditions are proposed to simulate realistic opening cracks with dielectric. Ideal boundary conditions of a combination of electrically permeable or impermeable and magnetically permeable or impermeable assumptions are several limiting cases of the semi-permeable dielectric crack. Utilizing the Laplace and Fourier transforms, the mixed initial-boundary-value problem is reduced to solving singular integral equations with Cauchy kernel. Dynamic intensity factors of stress, electric displacement, magnetic induction and crack opening displacement (COD) near the inner and outer crack tips are determined in the Laplace transform domain. Numerical results for a special magnetoelectroelastic solid are calculated to show the influences of the dielectric permittivity and magnetic permeability inside the cracks on the crack-face electric displacement and magnetic induction. By means of a numerical inversion of the Laplace transform, the variations of the normalized intensity factors of stress and COD are discussed against applied magnetoelectric impact loadings and the geometry of the cracks for fully impermeable, vacuum, fully permeable cracks and shown in graphics.  相似文献   

7.
This paper analyzes the dynamic magnetoelectroelastic behavior induced by a penny-shaped crack in a magnetoelectroelastic layer subjected to prescribed stress or prescribed displacement at the layer surfaces. Two kinds of crack surface conditions, i.e., magnetoelectrically impermeable and permeable cracks, are adopted. The Laplace and Hankel transform techniques are employed to reduce the problem to Fredholm integral equations. Field intensity factors are obtained and discussed. Numerical results of the crack opening displacement (COD) intensity factors are presented and the effects of magnetoelectromechanical loadings, crack surface conditions and crack configuration on crack propagation and growth are examined. The results indicate that among others, the fracture behaviors of magnetoelectroelastic materials are affected by the sizes and directions of the prescribed magnetic and/or electric fields, and the effects are strongly dependent on the elastic boundary conditions.  相似文献   

8.
徐燕  杨娟 《力学季刊》2022,43(1):149-158
基于线性磁电弹性理论,利用Schwarz-Christoffel(CS)变换技术和Stroth公式,首次系统研究了压电压磁复合材料中含带两个不对称裂纹的正六边形孔口问题在部分渗透磁电边界条件下的解析解.当忽略磁场时,磁电非渗透裂纹和磁电渗透裂纹两种极端情况下的解析解答可退化为文献已有研究结果.数值结果揭示了正六边形孔口尺寸、裂纹长度以及力电载荷和磁载荷对能量释放率的影响规律.研究结果表明:减小孔口边长和裂纹长度可以提高材料的可靠性;机械载荷总是促进裂纹扩展;在磁电非渗透和磁电部分渗透边界条件下,负电场和负磁场会延缓裂纹的扩展,而正电场可以增强或阻碍裂纹的扩展,这取决于所施加的电场和磁场的强度以及机械载荷的水平;在磁电渗透边界条件下,电场和磁场对裂纹的扩展没有影响.  相似文献   

9.
This paper deals with the antiplane magnetoelectroelastic problem of an internal crack normal to the edge of a functionally graded piezoelectric/piezomagnetic half plane. The properties of the material such as elastic modulus, piezoelectric constant, dielectric constant, piezomagnetic coefficient, magnetoelectric coefficient and magnetic permeability are assumed in exponential forms and vary along the crack direction. Fourier transforms are used to reduce the impermeable and permeable crack problems to a system of singular integral equations, which is solved numerically by using the Gauss-Chebyshev integration technique. The stress, electric displacement and magnetic induction intensity factors at the crack tips are determined numerically. The energy density theory is applied to study the effects of nonhomogeneous material parameter β, edge conditions, location of the crack and load ratios on the fracture behavior of the internal crack.  相似文献   

10.
This paper discusses the different electromagnetic boundary conditions on the crack-faces in magnetoelectroelastic materials, which possess coupled piezoelectric, piezomagnetic and magnetoelectric effects. A notch of finite thickness in these materials containing air (or vacuum) is also addressed. Four ideal crack-face electromagnetic boundary condition assumptions, that is, (a) electrically and magnetically impermeable crack, (b) electrically impermeable and magnetically permeable crack, (c) electrically permeable and magnetically impermeable crack and (d) electrically and magnetically permeable crack, are investigated separately. The influence of notch thickness on the field intensity factors at notch tips and the electromagnetic field inside the notch are obtained in closed-form. The results are compared with the ideal crack solutions. Applicability of crack-face electromagnetic boundary condition assumptions is discussed.  相似文献   

11.
Using the fundamental solutions for three-dimensional transversely isotropic magnetoelectroelastic bimaterials, the extended displacements at any point for an internal crack parallel to the interface in a magnetoelectroelastic bimaterial are expressed in terms of the extended displacement discontinuities across the crack surfaces. The hyper-singular boundary integral–differential equations of the extended displacement discontinuities are obtained for planar interface cracks of arbitrary shape under impermeable and permeable boundary conditions in three-dimensional transversely isotropic magnetoelectroelastic bimaterials. An analysis method is proposed based on the analogy between the obtained boundary integral–differential equations and those for interface cracks in purely elastic media. The singular indexes and the singular behaviors of near crack-tip fields are studied. Three new extended stress intensity factors at crack tip related to the extended stresses are defined for interface cracks in three-dimensional transversely isotropic magnetoelectroelastic bimaterials. A penny-shaped interface crack in magnetoelectroelastic bimaterials is studied by using the proposed method.The results show that the extended stresses near the border of an impermeable interface crack possess the well-known oscillating singularity r?1/2±iε or the non-oscillating singularity r?1/2±κ. Three-dimensional transversely isotropic magnetoelectroelastic bimaterials are categorized into two groups, i.e., ε-group with non-zero value of ε and κ-group with non-zero value of κ. The two indexes ε and κ do not coexist for one bimaterial. However, the extended stresses near the border of a permeable interface crack have only oscillating singularity and depend only on the mechanical loadings.  相似文献   

12.
Magnetoelectroelastic materials are inherently brittle and prone to fracture. Therefore, it is important to evaluate the fracture behavior of these advanced materials. In this paper, a periodic array of cracks in a transversely isotropic magnetoelectroelastic material is investigated. Hankel transform is applied to solve elastic displacements, electric potential and magnetic potential. The problem is reduced into a system of integral equations. Both impermeable and permeable crack-face electromagnetic boundary conditions assumptions are investigated. Quantities of the stress, electric displacement and magnetic induction and their intensity factor are obtained. Effect of the crack spacing on these quantities is investigated in details.  相似文献   

13.
An interface crack with a frictionless contact zone at the right crack-tip between two dissimilar magnetoelectroelastic materials under the action of a thermal flux and remote magnetoelectromechanical loads is considered. The open part of the crack is assumed to be electrically impermeable and magnetically permeable, and the crack faces are assumed to be heat insulted. The inhomogeneous combined Dirichlet–Riemann and Hilbert boundary value problems are, respectively, formulated and solved analytically. Stress, electrical displacement intensity factors as well as energy release rate are found in analytical forms, and analytical expressions for the contact zone length have been obtained for both the general case and the case of small contact zone length. Some numerical results are presented, which show clearly the effects of thermal and magnetoelectromechanical loads on the contact zone length, stress intensity factor and energy release rate. Results presented in this paper should have potential applications to the design of multilayered magnetoelectroelastic structures and devices.  相似文献   

14.
Analytical solutions for an anti-plane Griffith moving crack inside an infinite magnetoelectroelastic medium under the conditions of permeable crack faces are formulated using integral transform method. The far-field anti-plane mechanical shear and in-plane electrical and magnetic loadings are applied to the magnetoelectroelastic material. Expressions for stresses, electric displacements and magnetic inductions in the vicinity of the crack tip are derived. Field intensity factors for magnetoelectroelastic material are obtained. The stresses, electric displacements and magnetic inductions at the crack tip show inverse square root singularities. The moving speed of the crack have influence on the dynamic electric displacement intensity factor (DEDIF) and the dynamic magnetic induction intensity factor (DMIIF), while the dynamic stress intensity factor (DSIF) does not depend on the velocity of the moving crack. When the crack is moving at very lower or very higher speeds, the crack will propagate along its original plane; while in the range of Mc1 < M < Mc2, the propagation of the crack possibly brings about the branch phenomena in magnetoelectroelastic media.  相似文献   

15.
A mode III crack cutting perpendicularly across the interface between two dissimilar semi-infinite magnetoelectroelastic solid is studied under the combined loads of a line force, a line electric charge and a line magnetic charge at an arbitrary location. The impermeable conditions are implied on the crack faces. The technique developed in literature for the elastic bimaterial with a crack cutting interface is exploited to treat the magnetoelectroelastic bimaterial. The Riemann-Hilbert problem can be formulated and solved based on complex variable method. Analytical solutions can be obtained for the entire plane. The intensity factors around crack tips can be defined for the elastic, electric and magnetic fields. It shows that, no matter where the load position is, the electric displacement intensity factors (EDIFs), as well as the magnetic induction intensity factors (MIIFs), are identical in magnitude but opposite in sign for both crack tips, on condition that a line force is solely applied. Alternatively, if only a line electric charge is considered, then the stress intensity factors (SIFs) and the MIIFs exhibit the behavior. Likewise, if only a line magnetic charge is applied, it turns to the SIFs and the EDIFs instead. In addition, the dependence of the intensity factors is graphically shown with respect to the location of a line force. It is found that the SIF for a crack tip tends to be infinite if the applied force is approaching the tip itself, but the EDIF, with the complete opposite trend, tends to be vanishing. Finally, focusing on the more practical case of piezoelectric/piezomagnetic bimaterial, variation of the SIF along with the moduli as well as the piezo constitutive coefficients is explored. These analyses may provide some guidance for material selection by minimizing the SIF. It is also believed that the results obtained in this paper can serve as the Green’s function for the dissimilar magnetoelectroelastic semi-infinite bimaterial with a crack cutting the interface under general magnetoelectromechanical loads.  相似文献   

16.
Extending the polarization saturation model [Gao et al., 1997. Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J. Mech. Phys. Solids 45, 491-510] and the dielectric breakdown (DB) model [Zhang et al., 2005. The strip dielectric breakdown model. Int. J. Fract. 132, 311-327] in piezoelectric materials, the Strip Electric-Magnetic Breakdown (SEMB) model is proposed for electrically and magnetically impermeable crack in a magnetoelectroelastic medium to study the effect of the nonlinear character of electric field and magnetic field on fracture of magnetoelectroelastic materials. In the SEMB model, the electric field in the strip of the electric breakdown zone ahead of the crack tip is equal to the electric breakdown strength, while the magnetic filed in the strip of the magnetic breakdown zone is equal to the magnetic breakdown strength. By using the extended Stroh formalism and the extended dislocation modeling of a crack, the Griffith crack problem under the electrically and magnetically elastic-plastic condition in a magnetoelectroelastic medium is reduced to a set of dual integral equations. The sizes of the electric breakdown zone and the magnetic breakdown zone, the extended intensity factors and the local J-integral are obtained. The effect of the combined mechanical-electric-magnetic loadings on the local J-integral is studied.  相似文献   

17.
In our previous work [Gao, C.F., Mai, Y.W., Zhang, N., 2010. Solution of a crack in an electrostrictive solid. International Journal of Solids and Structures 47, 444–453.] the intensity factor of the total stress for an impermeable crack is directly written by using the corresponding result of a permeable crack. This is based on the fact that an impermeable crack can be considered as a special case of a permeable crack where the electric field is not zero. However, the singularity of total stresses for the impermeable crack can also be analyzed directly from the complex potentials. In this Corrigendum, the singularity of the total stresses is further studied for the impermeable crack, and the intensity factors are re-derived by using the obtained complex potentials. It is shown that for an impermeable crack, the total stresses still have an inverse square-root singularity but their intensity factor is different from that obtained by the solution of a permeable crack. Therefore, it is concluded that solutions for impermeable cracks cannot be obtained directly from those of permeable cracks, since the assumption of the electric boundary condition has not only influenced the electric fields on the crack-faces but also on the electric body force inside the material.  相似文献   

18.
A constant moving crack in a magnetoelectroelastic material under in-plane mechanical, electric and magnetic loading is studied for impermeable crack surface boundary conditions. Fourier transform is employed to reduce the mixed boundary value problem of the crack to dual integral equations, which are solved exactly. Steady-state asymptotic fields near the crack tip are obtained in closed form and the corresponding field intensity factors are expressed explicitly. The crack speed influences the singular field distribution around the crack tip and the effects of electric and magnetic loading on the crack tip fields are discussed. The crack kinking phenomena is investigated using the maximum hoop stress intensity factor criterion. The magnitude of the maximum hoop stress intensity factor tends to increase as the crack speed increases.  相似文献   

19.
Transient response of an annular interfacial crack between dissimilar magnetoelectroelastic layers under impacts is investigated. On the crack surface, magnetoelectrically impermeable boundary condition is adopted. Using Laplace and Hankel transform techniques, the mixed boundary value problem is reduced to a system of singular integral equations. The integral equations are further reduced to a system of algebraic equations with the aid of Jacobi polynomials. The dynamic field intensity factor and dynamic energy release rate are determined. Numerical results reveal the effects of electric or magnetic loadings and material parameters of composite on crack propagation and growth.  相似文献   

20.
For a crack in a magnetoelectroelastic plane under the electrically and magnetically semi-permeable boundary condition, we derive the non-linear analytical solution of the strip electric–magnetic polarization saturation (EMPS) model. Using the extended dislocation theory and integral equation method, we obtain the electric and magnetic yielding zones, as well as the field intensity factor and local J-integral. Adapting an iterative method, numerical examples were performed to analyze the effect of different boundary conditions and the electric–magnetic saturated properties on the electric displacement and magnetic induction in the crack cavity, electric and magnetic yielding zones, stress intensity factor and local J-integral.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号