首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A multiphysics model is presented in this paper for simulation of kinetics of the smart hydrogels subject to an externally applied electric field, especially for analysis of the transient deformation of the hydrogel. The model termed the multi-effect-coupling electric stimulus (MECe) takes account of the coupled chemo-electro-mechanical multiphysics domains and the multi-phase effect of polymeric network and interstitial liquid as well as ionic species. The MECe model is validated well by transient simulation and comparison with available experimental data. Kinetics of ionic concentration of diffusive species is simulated. Parameter studies on the hydrogel displacement are conducted in detail for influences of externally applied electric voltage, initially fixed-charge density and surrounding bath solution concentration.  相似文献   

2.
作为一种具有多场耦合特性的智能柔体材料,水凝胶的制备技术、性能表征与结构应用得到迅速发展。本文在分析水凝胶本构理论和结构设计的基础上,提出了水凝胶多场耦合计算力学的基本方法和范式,包括微观粗粒化分子动力学模拟和宏观耦合有限元方法等,计算了化学-力学耦合作用下水凝胶材料与结构的变形和应力,给出了多个数值算例与结果比较。研究指出多场耦合计算力学将成为水凝胶材料和结构分析的主要手段,并推动水凝胶等这类智柔材料的性能设计与工程应用。  相似文献   

3.
A model for transient deformation of neutral hydrogels that takes into account conservation of momentum, energy and mass for the solid polymer and fluid phase is derived, nondimensionalized and analyzed. Slow- and fast-response hydrogels are studied for three cases based on the response of (i) a spherical hydrogel, (ii) a constrained hydrogel slab to a step change in temperature, and (iii) the deformation in a temperature gradient. Model predictions for case (i) are shown to agree well with experiments for swelling and shrinking. For case (ii), solvent can be seen entering at the sides and flowing into the interior and towards the corners, such that the corners undergo a faster deformation than the sides. Immersed in a temperature gradient, case (iii), the hydrogel undergoes a bending motion and reaches a curved equilibrium shape, similar to the bending motion of polyelectrolyte hydrogels subjected to an external electric field. The benefit of the scale analysis conducted here, to predict correctly, prior to numerical computations, important characteristics such as stress, osmotic pressure and deformation times, is also highlighted.  相似文献   

4.
Hydrogels are capable of coupled mass transport and large deformation in response to external stimuli. In this paper, a nonlinear, transient finite element formulation is presented for initial boundary value problems associated with swelling and deformation of hydrogels, based on a nonlinear continuum theory that is consistent with classical theory of linear poroelasticity. A mixed finite element method is implemented with implicit time integration. The incompressible or nearly incompressible behavior at the initial stage imposes a constraint to the finite element discretization in order to satisfy the Ladyzhenskaya–Babuska–Brezzi (LBB) condition for stability of the mixed method, similar to linear poroelasticity as well as incompressible elasticity and Stokes flow; failure to choose an appropriate discretization would result in locking and numerical oscillations in transient analysis. To demonstrate the numerical method, two problems of practical interests are considered: constrained swelling and flat-punch indentation of hydrogel layers. Constrained swelling may lead to instantaneous surface instability for a soft hydrogel in a good solvent, which can be regulated by assuming a stiff surface layer. Indentation relaxation of hydrogels is simulated beyond the linear regime under plane strain conditions, in comparison with two elastic limits for the instantaneous and equilibrium states. The effects of Poisson’s ratio and loading rate are discussed. It is concluded that the present finite element method is robust and can be extended to study other transient phenomena in hydrogels.  相似文献   

5.
Immersed in an ionic solution, a network of polyampholytic polyelectrolyte imbibes the solution and swells, resulting in a polyampholytic pH-sensitive hydrogel, which can respond to changes in the surrounding environmental pH. The presence of fixed charges and mobile ions due to the dissociation of ionizable acidic and basic groups may give rise to a region called the electrical double layer of a thickness scaled by the Debye length. Owing to the existence of the electrical double layer, when the size of a polyampholytic pH-sensitive hydrogels is comparable to, or smaller than, the Debye length, the behavior of the gel may deviate from that of the gel of a large size. To account of the size effects, this paper develops a field theory for polyampholytic pH-sensitive hydrogels by coupling large deformation of the network, the dissociation of the functional groups and the migration of the ions and the solvent. The theory is then applied to explore the influence of pH, salt concentration, geometric constraint and the effects of the electrical double layer on swelling properties by analyzing a thin layer of a polyampholytic pH-sensitive hydrogel immersed in a solution.  相似文献   

6.
A 2D lattice approach to describe hydraulic fracturing is presented. The interaction of fluid pressure and mechanical response is described by Biot's theory. The lattice model is applied to the analysis of a thick-walled cylinder, for which an analytical solution for the elastic response is derived. The numerical results obtained with the lattice model agree well with the analytical solution. Furthermore, the coupled lattice approach is applied to the fracture analysis of the thick-walled cylinder. It is shown that the proposed lattice approach provides results that are independent of the mesh size. Moreover, a strong geometrical size effect on nominal strength is observed which lies between analytically derived lower and upper bounds. This size effect decreases with increasing Biot's coefficient.  相似文献   

7.
数值模拟离子强度敏感水凝胶的多场特性   总被引:1,自引:0,他引:1  
尹鹿  袁振  倪勇  李华  何陵辉 《力学学报》2005,37(3):363-367
发展了多物理模型来研究溶液中离子强度敏感水凝胶电-力-化学多场耦合的特性. 模 型的主要控制方程包括:计算水凝胶内外离子浓度分布的Nernst-Planck化学场方程;描述 膨胀变形的力学场方程和描述电场的泊松方程. 无网格有限云团法和牛顿迭代法用来数值离 散和求解控制方程. 通过对比多场耦合的响应, 包括胶的膨胀率和胶内外离子浓度和电势的分布,探讨了影响胶体变形的主要因素. 对数值模拟结果和实验结果进行了对照.  相似文献   

8.
压电层合圆板传感器的非线性静力耦合分析   总被引:2,自引:0,他引:2  
本文基于von Karman薄板非线性理论,压电基本方程和经典层合板理论,对上,下表面粘有压电传感膜层的圆薄板压力传感器的力-电耦合特性进行了定理分析。首先,针对压电层合圆板传感器件建立了考虑几何非线性变形的力-意耦合模型。给出了压电薄膜层感应电量的计算公式;然后,采用级数解法进行了求解,得到了非线性静力耦合问题的幂级数精确解,给出了传感器静态测量过程中所关心的压力-电量特征曲线和中心挠度,电量特征曲线;同时,定量讨论了压电二次效应对感应电量和层合结构中心挠度的影响。通过所得结果,在压电式压力传感器设计中,为采用电信号直接输出有关结构的变形和外界载荷等待测参量提供了依据。  相似文献   

9.
A multi-effect-coupling glucose-stimulus (MECglu) model is developed and solved numerically for the swelling behavior of soft smart hydrogels responding to changes in the environmental glucose concentration. The model considers the effect of the glucose oxidation reaction catalyzed by enzymes including glucose oxidase and catalase. It is composed of the Nernst-Planck equation for the mobile species in the solvent, the Poisson equation for the electric potential, and a nonlinear mechanical equation for the large deformations of the hydrogel that arise due to the conversion of chemical energy to mechanical. Based on the theory of the chemo-electro-mechanical-coupled fields, the formulation of the fixed charge groups bound onto the cross-linked polymer network is associated with the change of the ambient solution pH. The MECglu model is validated by comparison between the steady-state computation and experimental equilibrium swelling curves, and good agreement is obtained. A parameter study is then conducted by steady-state simulations to ascertain the impact of various solvent parameters on the responsive swelling behavior of the hydrogel. One key parameter is the glucose concentration, which is varied within the range of practical physiological glucose concentrations from 0 to 16.5 mM (300 mg/ml) to support the design and optimization of an insulin delivery system based on a glucose-sensitive hydrogel with immobilized glucose oxidase and catalase. The influence of oxygen and glucose concentrations in the solvent is then further studied for the distributive profiles of reacting and diffusive species concentrations, the electric potential, the displacement, as well as the swelling ratio of the glucose-sensitive hydrogel.  相似文献   

10.
In response to external stimuli, polymeric hydrogels can change volume and shape dramatically. Experimental studies have observed a variety of instability patterns of hydrogels, due to swelling or shrinking, many of which have not been well understood. The present paper considers swell-induced surface instability of a hydrogel layer on a rigid substrate. Based on a recently developed theoretical framework for neutral polymeric gels, a linear perturbation analysis is performed to predict the critical condition for the onset of the surface instability. Using a nonlinear finite element method, numerical simulations are presented to show the swelling process, with the evolution of initial surface perturbations followed by the formation of crease-like surface patterns. In contrast to previously suggested critical conditions for surface creasing, the present study suggests a material-specific condition that predicts a range of critical swelling ratios from about 2.5 to 3.4 and quantitatively relates the critical condition to material properties of the hydrogel system. A stability diagram is constructed with two distinct regions for stable and unstable hydrogels depending on two dimensionless material parameters.  相似文献   

11.
As polymer networks infiltrated with water, hydro-gels are major constituents of animal and plant bodies and have diverse engineering applications. While natural hydro-gels can robustly adhere to other biological materials, such as bonding of tendons and cartilage on bones and adhe-sive plaques of mussels, it is challenging to achieve such tough adhesions between synthetic hydrogels and engineer-ing materials. Recent experiments show that chemically anchoring long-chain polymer networks of tough synthetic hydrogels on solid surfaces create adhesions tougher than their natural counterparts, but the underlying mechanism has not been well understood. It is also challenging to tune sys-tematically the adhesion of hydrogels on solids. Here, we provide a quantitative understanding of the mechanism for tough adhesions of hydrogels on solid materials via a com-bination of experiments, theory, and numerical simulations. Using a coupled cohesive-zone and Mullins-effect model val-idated by experiments, we reveal the interplays of intrinsic work of adhesion, interfacial strength, and energy dissipation in bulk hydrogels in order to achieve tough adhesions. We fur-ther show that hydrogel adhesion can be systematically tuned by tailoring the hydrogel geometry and silanization time of solid substrates, corresponding to the control of energy dis-sipation zone and intrinsic work of adhesion, respectively. The current work further provides a theoretical foundation for rational design of future biocompatible and underwater adhesives.  相似文献   

12.
This paper uses the thermodynamic data of aqueous solutions of uncrosslinked poly(N-isopropylacrylamide) (PNIPAM) to study the phase transition of PNIPAM hydrogels. At a low temperature, uncrosslinked PNIPAM can be dissolved in water and form a homogenous liquid solution. When the temperature is increased, the solution separates into two liquid phases with different concentrations of the polymer. Covalently crosslinked PNIPAM, however, does not dissolve in water, but can imbibe water and form a hydrogel. When the temperature is changed, the hydrogel undergoes a phase transition: the amount of water in the hydrogel in equilibrium changes with temperature discontinuously. While the aqueous solution is a liquid and cannot sustain any nonhydrostatic stress in equilibrium, the hydrogel is a solid and can sustain nonhydrostatic stress in equilibrium. The nonhydrostatic stress can markedly affect various aspects of the phase transition in the hydrogel. We adopt the Flory-Rehner model, and show that the interaction parameter as a function of temperature and concentration obtained from the PNIPAM-water solution can be used to analyze diverse phenomena associated with the phase transition of the PNIPAM hydrogel. We analyze free swelling, uniaxially and biaxially constrained swelling of a hydrogel, swelling of a core-shell structure, and coexistent phases in a rod. The analysis is related to available experimental observations. Also outlined is a general theory of coexistent phases undergoing inhomogeneous deformation.  相似文献   

13.
The analysis of periodic unsteady incompressible flow inside compliant vessels is of considerable interest for the simulation of blood flow in arteries. Weakly coupled fluid-structure interaction (FSI) models seem to be most suitable for this purpose. For weakly coupled solution methods, however, often convergence may not be achieved for compliant vessels with an axial length scale that is large compared to the characteristic radius. In this study, a time-periodic method for weakly coupled FSI models is presented. Approximate solutions of subsequent time-periods are obtained using the solution of the previous time-period as an initial solution. For the first period, not only suitable boundary conditions are derived from a 1-D wave propagation model, but also the initial axial pressure distribution. The time-periodic method was successfully applied to straight, curved and bifurcating geometries. The new approach proves to have a far better computational stability than weakly coupled methods based on timestep-wise coupling, especially in vessels with a length that is an order of magnitude larger than the radius.  相似文献   

14.
聚电解质两性凝胶的侧链有可电离的酸性和碱性基团,因其能对所处溶液环境的pH值产生响应,又可称作两性pH敏感凝胶.两性pH敏感凝胶属于超弹性材料,其变形问题涉及力学-化学耦合.同时,由于凝胶的变形伴随着溶剂分子的迁移,导致变形不能瞬间完成,故应研究两性pH敏感凝胶变形发展的全过程.由于其实用价值高,研究难度大,两性pH敏感凝胶的瞬态溶胀问题近年来引起了国内外众多研究人员的关注.本文以非线性连续介质力学理论和孔隙弹性理论为基础,结合电离平衡、唐南平衡等条件,获得了能描述两性pH敏感凝胶材料在外界激励下形变发展全过程的基本方程,探究了外加载荷、溶液pH值、盐溶液浓度等因素对两性pH敏感凝胶瞬态溶胀的影响,所得结果对该材料的应用有一定参考价值.  相似文献   

15.
Smart hydrogels are environmentally sensitive hydrogels, which can produce a sensitive response to external stimuli, and often exhibit the characteristics of multi filed coupling. In this paper, a hydrogel rod under chemo-mechanical coupling was analytically studied based on a poroelastical model. The already known constitutive and governing equations were simplified into the one dimensional case, then two different boundary conditions were considered. The expressions of concentration, displacement, chemical potential and stress related to time were obtained in a series form. Examples illustrate the interaction mechanism of chemical and mechanical effect. It was found that there was a balance state in the diffusion of concentration and the diffusion process could lead to the expansion or the stress change of the hydrogel rod.  相似文献   

16.
《Comptes Rendus Mecanique》2014,342(12):706-713
pH-Sensitive hydrogels are networks of polymers that can imbibe a solution and swell. They are used in many smart engineering devices. One of such applications is a diffractometric biochemical sensor. This sensor is composed of a hydrogel grating fixed on a hard substrate that can swell due to pH changes. The aim of the present study is to develop a numerical model of such a bi-material device used to measure pH value of a solution.  相似文献   

17.
It is possible that self-excited vibrations in turbomachine blades synchronize due to elastic coupling through the shaft. The synchronization of four coupled van der Pol oscillators is presented here as a simplified model. For quasilinear oscillations, a stability condition is derived from an analysis based on linearizing the original equation around an unperturbed limit cycle and transforming it into Hill’s equation. For the nonlinear case, numerical simulations show the existence of two well-defined regions of phase relationships in parameter space in which a multiplicity of periodic attractors is embedded. The size of these regions strongly depends on the values of the oscillator and coupling constants. For the coupling constant below a critical value, there exists a region in which a diversity of phase-shift attractors is present, whereas for values above the critical value an in-phase attractor is predominant. It is observed that the presence of an anti-phase attractor in the subcritical region is associated with sudden changes in the period of the coupled oscillators. The convergence of the coupled system to a particular periodic attractor is explored using several initial conditions. The study is extended to non-identical oscillators, and it is found that there is synchronization even over a wide range of difference among the oscillator constants.  相似文献   

18.
利用随机场对圆柱薄壳结构的初始几何缺陷进行建模,并据此建立了一种用于含初始几何缺陷轴压圆柱薄壳屈曲分析的随机分析方法。首先,指出已有将圆柱薄壳初始几何缺陷表征为二维高斯随机场的方法会导致与实际不相符的初始几何缺陷,如圆柱周长显著增大或缩小的几何缺陷。其次,提出一种考虑周长不变约束的随机场建模方法,以剔除与实际不相符的随机几何缺陷。最后,基于所建立的初始几何缺陷随机场模型,利用非干涉多项式混沌展开法进行圆柱薄壳的随机屈曲分析,给出临界屈曲载荷的概率分布。数值试验结果表明,基于随机场理论的初始几何缺陷建模方法可有效刻画几何缺陷对结构承载能力的影响,而提出的约束随机场建模方法又能有效减小结果的分散性。  相似文献   

19.
常利娜  姜宗林 《力学学报》2006,38(3):296-301
应用频散可控耗散格式对球面聚心气相爆轰波的传播过程进行了数值模拟 研究. 通过跟踪波阵面上压力和温度变化,分析这些参数在爆轰波传播过程中的演变规律, 及其与几何尺度和初始条件之间的依赖关系. 研究结果表明,仅在远场波面压力的变化近似 只依赖于r/R,对称中心附近则需要考虑初始半径$R$的影响;波面压力与初始压力的变化呈 线性关系;汇聚过程中温度升高比压力慢得多.  相似文献   

20.
The mode III crack problem in a medium possessing coupled electro-magneto-elastic is considered. Two asymmetrical edge cracks emanate from an elliptical hole. Combined stress, electric and magnetic loads are considered. The elliptical hole and cracks are assumed to be either magneto-electrically impermeable or permeable. The closed-form solution for stress, electric and magnetic intensity factors are derived explicitly. Also the solution for energy release rate is given in closed form. The solution is based on the complex variable method combined with the method of conformal mapping. Numerical computations are given to illustrate the effect of variable geometrical and material parameters on stress, electric and magnetic intensity factors and energy release rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号