首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are large classes of materials problems that involve the solutions of stress, displacement, and strain energy of dislocation loops in elastically anisotropic solids, including increasingly detailed investigations of the generation and evolution of irradiation induced defect clusters ranging in sizes from the micro- to meso-scopic length scales. Based on a two-dimensional Fourier transform and Stroh formalism that are ideal for homogeneous and layered anisotropic solids, we have developed robust and computationally efficient methods to calculate the displacement fields for circular and polygonal dislocation loops. Using the homogeneous nature of the Green tensor of order −1, we have shown that the displacement and stress fields of dislocation loops can be obtained by numerical quadrature of a line integral. In addition, it is shown that the sextuple integrals associated with the strain energy of loops can be represented by the product of a pre-factor containing elastic anisotropy effects and a universal term that is singular and equal to that for elastic isotropic case. Furthermore, we have found that the self-energy pre-factor of prismatic loops is identical to the effective modulus of normal contact, and the pre-factor of shear loops differs from the effective indentation modulus in shear by only a few percent. These results provide a convenient method for examining dislocation reaction energetic and efficient procedures for numerical computation of local displacements and stresses of dislocation loops, both of which play integral roles in quantitative defect analyses within combined experimental–theoretical investigations.  相似文献   

2.
The traditional problems of the thick walled spherical and circular cylindrical shells under internal and external pressure are solved in the context of the theory of linear elastic materials with voids. The solutions are quasi-static. The stress distributions are those predicted by isotropic linear elasticity. The displacement and solid volume fraction charge fields exhibit a volumetric viscoelasticity induced by a rate dependence of the volume fraction change.  相似文献   

3.
The singular nature of the elastic fields produced by dislocations presents conceptual challenges and computational difficulties in the implementation of discrete dislocation-based models of plasticity. In the context of classical elasticity, attempts to regularize the elastic fields of discrete dislocations encounter intrinsic difficulties. On the other hand, in gradient elasticity, the issue of singularity can be removed at the outset and smooth elastic fields of dislocations are available. In this work we consider theoretical and numerical aspects of the non-singular theory of discrete dislocation loops in gradient elasticity of Helmholtz type, with interest in its applications to three dimensional dislocation dynamics (DD) simulations. The gradient solution is developed and compared to its singular and non-singular counterparts in classical elasticity using the unified framework of eigenstrain theory. The fundamental equations of curved dislocation theory are given as non-singular line integrals suitable for numerical implementation using fast one-dimensional quadrature. These include expressions for the interaction energy between two dislocation loops and the line integral form of the generalized solid angle associated with dislocations having a spread core. The single characteristic length scale of Helmholtz elasticity is determined from independent molecular statics (MS) calculations. The gradient solution is implemented numerically within our variational formulation of DD, with several examples illustrating the viability of the non-singular solution. The displacement field around a dislocation loop is shown to be smooth, and the loop self-energy non-divergent, as expected from atomic configurations of crystalline materials. The loop nucleation energy barrier and its dependence on the applied shear stress are computed and shown to be in good agreement with atomistic calculations. DD simulations of Lomer–Cottrell junctions in Al show that the strength of the junction and its configuration are easily obtained, without ad-hoc regularization of the singular fields. Numerical convergence studies related to the implementation of the non-singular theory in DD are presented.  相似文献   

4.
We present a field formulation for defects that draws from the classical representation of the cores as force dipoles. We write these dipoles as singular distributions. Exploiting the key insight that the variational setting is the only appropriate one for the theory of distributions, we arrive at universally applicable weak forms for defects in nonlinear elasticity. Remarkably, the standard, Galerkin finite element method yields numerical solutions for the elastic fields of defects that, when parameterized suitably, match very well with classical, linearized elasticity solutions. The true potential of our approach, however, lies in its easy extension to generate solutions to elastic fields of defects in the regime of nonlinear elasticity, and even more notably for Toupin's theory of gradient elasticity at finite strains (Toupin Arch. Ration. Mech. Anal., 11 (1962) 385). In computing these solutions we adopt recent numerical work on an isogeometric analytic framework that enabled the first three-dimensional solutions to general boundary value problems of Toupin's theory (Rudraraju et al. Comput. Methods Appl. Mech. Eng., 278 (2014) 705). We first present exhaustive solutions to point defects, edge and screw dislocations, and a study on the energetics of interacting dislocations. Then, to demonstrate the generality and potential of our treatment, we apply it to other complex dislocation configurations, including loops and low-angle grain boundaries.  相似文献   

5.
A nonlinear theory of continuously distributed dislocation and disclination type defects in elastic media with intrinsic rotational degrees of freedom and couple stresses is proposed. The mediumstrains are assumed to be finite. The solving equations of the continuum theory of defects are obtained by passing to the limit from a discrete set of isolated dislocations and disclinations to their continuous distribution. The notions of dislocation and disclination densities in a micropolar body under large deformations are introduced. Incompatibility equations are obtained and a boundaryvalue problem of equilibriumis posed for an elastic micropolar body with a given density of distributed defects. A nonlinear problem of determining the intrinsic stresses in a hollow circular cylinder due to a given distribution of disclinations is solved.  相似文献   

6.
A complete solution has been obtained for the problem of multiple interacting spherical inhomogeneities with a Gurtin-Murdoch interface model that includes both surface tension and surface stiffness effects. For this purpose, a vectorial spherical harmonics-based analytical technique is developed. This technique enables solution of a wide class of elasticity problems in domains with spherical boundaries/interfaces and makes fulfilling the vectorial boundary or interface conditions a routine procedure. A general displacement solution of the single-inhomogeneity problem is sought in a form of a series of the vectorial solutions of the Lame equation. This solution is valid for any non-uniform far-field load and it has a closed form for polynomial loads. The superposition principle and re-expansion formulas for the vectorial solutions of the Lame equation extend this theory to problems involving multiple inhomogeneities. The developed semi-analytical technique precisely accounts for the interactions between the nanoinhomogeneities and constitutes an efficient computational tool for modeling nanocomposites. Numerical results demonstrate the accuracy and numerical efficiency of the approach and show the nature and extent to which the elastic interactions between the nanoinhomogeneities with interface stress affect the elastic fields around them.  相似文献   

7.
A screw dislocation outside an infinite cylindrical nano-inhomogeneity of circular cross section is considered within the isotropic theory of gradient elasticity. Fields of total displacements, elastic and plastic distortions, elastic strains and stresses are derived and analyzed in detail. In contrast with the case of classical elasticity, the gradient solutions are shown to possess no singularities at the dislocation line. Moreover, all stress components are continuous and smooth at the interface unlike the classical solution. As a result, the image force exerted on the dislocation due to the differences in elastic and gradient constants of the matrix and inhomogeneity, remains finite when the dislocation approaches the interface. The gradient solution demonstrates a non-classical size-effect in such a way that the stress level inside the inhomogeneity decreases with its size. The gradient and classical solutions coincide when the distances from the dislocation line and the interface exceed several atomic spacings.  相似文献   

8.
The elastic displacements, stresses and interaction energy of arbitrarily shaped dislocation loops with general Burgers vectors in transversely isotropic bimaterials (i.e. joined half-spaces) are expressed in terms of simple line integrals for the first time. These expressions are very similar to their isotropic full-space counterparts in the literature and can be easily incorporated into three-dimensional (3D) dislocation dynamics (DD) simulations for hexagonal crystals with interfaces/surfaces. All possible degenerate cases, e.g. isotropic bimaterials and isotropic half-space, are considered in detail. The singularities intrinsic to the classical continuum theory of dislocations are removed by spreading the Burgers vector anisotropically around every point on the dislocation line according to three particular spreading functions. This non-singular treatment guarantees the equivalence among different versions of the energy formulae and their consistency with the stress formula presented in this paper. Several numerical examples are provided as verification of the derived dislocation solutions, which further show significant influence of material anisotropy and bimaterial interface on the elastic fields and interaction energy of dislocation loops.  相似文献   

9.
A theory of gradient micropolar elasticity based on first gradients of distortion and bend-twist tensors for an isotropic micropolar medium has been proposed in Part I of this paper. Gradient micropolar elasticity is an extension of micropolar elasticity such that in addition to double stresses double couple stresses also appear. The strain energy depends on the micropolar distortion and bend-twist terms as well as on distortion and bend-twist gradients. We use a version of this gradient theory which can be connected to Eringen's nonlocal micropolar elasticity. The theory is used to study a straight-edge dislocation and a straight-wedge disclination. As one important result, we obtained nonsingular expressions for the force and couple stresses. For the edge dislocation the components of the force stress have extremum values near the dislocation line and those of the couple stress have extremum values at the dislocation line and for the wedge disclination the components of the force stress have extremum values at the disclination line and those of the couple stress have extremum values near the disclination line.  相似文献   

10.
The boundary-element method (BEM) applied to three-dimensional problems in the linear theory of elasticity is analyzed. The solutions of test problems for spherical and cubic cavities are used as examples to consider the basic aspects and difficulties of applying the traditional BEM to static and nonstationary three-dimensional problems. It is established that using Chebyshev polynomials in the Gaussian quadrature formula to evaluate the singular segments of surface integrals reduces the computation time by a factor of 2 to 3 without loss of accuracy compared with the traditional Gauss–Legendre formula. BEM-based approaches are proposed to solve three-dimensional problems in the linear theory of elasticity  相似文献   

11.
Dislocations and the elastic fields they induce in anisotropic elastic crystals are basic for understanding and modeling the mechanical properties of crystalline solids. Unlike previous solutions that provide the strain and/or stress fields induced by dislocation loops, in this paper, we develop, for the first time, an approach to solve the more fundamental problem—the anisotropic elastic dislocation displacement field. By applying the point-force Green’s function for a three-dimensional anisotropic elastic material, the elastic displacement induced by a dislocation of polygonal shape is derived in terms of a simple line integral. It is shown that the singularities in the integrand of this integral are all removable. The proposed expression is applied to calculate the elastic displacements of dislocations of two different fundamental shapes, i.e. triangular and hexagonal. The results show that the displacement jump across the dislocation loop surface exactly equals the assigned Burgers vector, demonstrating that the proposed approach is accurate. The dislocation-induced displacement contours are also presented, which could be used as benchmarks for future numerical studies.  相似文献   

12.
This paper investigates the interaction between a wedge disclination dipole and a circular nanoinhomogeneity embedded in an infinite matrix. The Gurtin–Murdoch surface/interface elasticity model is applied to account for the interface stress effect of the nanoinhomogeneity. A closed form solution for the stress fields inside the inhomogeneity and matrix is derived with the complex variable method of Muskhelishvili. The influences of the interfacial and bulk material properties as well as the geometric parameters on the material force of the wedge disclination dipole are systematically discussed. It is found that the interface stress effect may influence the material force of the wedge disclination dipole significantly.  相似文献   

13.
This paper investigated the interaction between an edge dislocation and a nonuniformly coated circular inclusion. Based on the technique of conformal mapping and the method of analytical continuation in conjunction with alternating technique, the solutions to plane elasticity problems for three dissimilar media are derived explicitly in a series form. For a limiting case when the thickness of the interphase layer is uniform, the derived analytical solutions of this paper are reduced to exactly the same results available in the literature. The image force acting on the dislocation is then determined by using the Peach–Koehler formula. It is found that the combination of material constants and nonuniformity of the interphase thickness will exert a significant influence on the dislocation force.  相似文献   

14.
In this paper we look at ring dislocations (circular loops) in an infinite isotropic full-space. The dislocation direction is either axial or radial. Unlike dislocations in plane analysis the path cut has a significant effect on the elastic fields. Solutions for the dislocations are given for a variety of path cuts with closed form expressions for the displacement and stress fields. When considered alone these dislocations do not obey Frank’s rule; these anomalies and other fundamental properties are discussed.  相似文献   

15.
The paper deals with elasto-plastic models for crystalline materials with defects, dislocations coupled with disclinations. The behaviour of the material is described with respect to an anholonomic configuration, endowed with a non-Riemannian geometric structure. The geometry of the material structure is generated by the plastic distortion, which is an incompatible second-order tensor, and by the so-called plastic connection which is metric compatible, with respect to the metric tensor associated with the plastic distortion. The free energy function is dependent on the second-order elastic deformation and on the state of defects. The tensorial measure of the defects is considered to be the Cartan torsion of the plastic connection and the disclination tensor. When we restrict to small elastic and plastic distortions, the measures of the incompatibility as well as the dislocation densities reduced to the classical ones in the linear elasticity. The constitutive equations for macroforces and the evolution equations for the plastic distortion and disclination tensor are provided to be compatible with the free energy imbalance principle.  相似文献   

16.
The nucleation of a Mode-I Zener crack from a wedge disclination dipole in the presence of a circular inhomogeneity is investigated. It is assumed that the disclination dipole and the nucleated Zener crack are along the radial direction of the inhomogeneity. Two cases are studied herein, i.e., the positive or negative wedge disclination of the dipole locates nearer to the inhomogeneity respectively. In order to investigate how various factors such as the elastic mismatch between the inhomogeneity and the matrix influence the nucleation of the Zener crack, the Stress Intensity Factor (SIF) at the sharp tip of the Zener crack is determined for different sets of geometric and material parameters with the distributed dislocation technique. The formulated singular integral equations are then solved numerically. Our results indicate that a nearby ‘hard’ inhomogeneity (having a higher shear modulus than the matrix) is beneficial to the crack nucleation for the first case (the positive disclination locates nearer to the inhomogeneity) while it retards the crack nucleation for the second case (the negative disclination locates nearer to the inhomogeneity). A nearby ‘soft’ inhomogeneity is helpful to the crack nucleation for the second case while it has inverse effects on the crack nucleation for the first case. This phenomenon can be explained with the concept of material force. The characteristics of the crack nucleation and the effects of the disclination strength, the distance between the inhomogeneity and the dipole, the disclination dipole arm length and inhomogeneity size on the crack nucleation are also systematically studied. The obtained results are helpful to characterize and enhance the strength of precipitate alloys and particle reinforced composites.  相似文献   

17.
Similarly to the angular dislocation introduced by Yoffe, the angular disclination is a basic configuration that is suitable for generating polygonal loops by superposition. The displacements in an unbounded elastic material are given and the generation of closed loops discussed.
Résumé La disclinaison angulaire est une configuration fondamentale la plus facile à construire des disclinaisons en polygone, tout comme dans le cas de la dislocation angulaire introduite par Yoffe. Nous donnons ici les déplacements dans un milieu élastique infini et discutons la méthode de construction des disclinaisons en polygone.
  相似文献   

18.
19.
The elastic interaction of an edge dislocation, which is located either outside or inside a circular inhomogeneity, with an interfacial crack is dealt with. Using Riemann–Schwarz’s symmetry principle integrated with the analysis of singularity of the complex potentials, the closed form solutions for the elastic fields in the matrix and inhomogeneity regions are derived explicitly. The image force on the dislocation is then determined by using the Peach–Keohler formula. The influence of the crack geometry and material mismatch on the dislocation force is evaluated and discussed when the dislocation is located in the matrix. It is shown that the interfacial crack has significant effect on the equilibrium position of the edge dislocation near a circular interface. The results also reveal a strong dependency of the dislocation force on the mismatch of the shear moduli and Poisson’s ratios between the matrix and inhomogeneity.  相似文献   

20.
An elastodynamic solution for the stress wave propagation in spherical curved plates composed of functionally graded materials (FGM) is presented. Properties of materials are assumed to vary in the direction of the thickness according to a known radial variation law (gradient field). The formulation is based on the linear three-dimensional elasticity. The Legendre orthogonal polynomial series expansion approach is used for determining the guided waves dispersion curves in functionally graded spherical curved plates. Our results from a homogeneous anisotropic spherical curved plate are compared with those published earlier to confirm the accuracy and range of applicability of this polynomial approach. Guided wave dispersion curves for graded spherical curved plates with different gradient fields are calculated, and the effects of the gradient field on the characteristics of guided waves are illustrated. Finally, dispersion curves for graded spherical curved plates at different ratios of inner radius to thickness are calculated to discover the influences of that ratio on the wave characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号