首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complexes of [Sm(o-MOBA)3bipy]2·H2O and [Sm(m-MOBA)3bipy]2·H2O (o(m)-MOBA = o(m)-methoxybenzoic acid, bipy-2,2′-bipyridine) have been synthesized and characterized by elemental analysis, IR, UV, XRD and molar conductance, respectively. The thermal decomposition processes of the two complexes were studied by means of TG–DTG and IR techniques. The thermal decomposition kinetics of them were investigated from analysis of the TG and DTG curves by jointly using advanced double equal-double steps method and Starink method. The kinetic parameters (activation energy E and pre-exponential factor A) and thermodynamic parameters (ΔH , ΔG and ΔS ) of the second-step decomposition process for the two complexes were obtained, respectively.  相似文献   

2.
New zinc(II) 4-hydroxybenzoate complex compounds with general formula [Zn(4-OHbenz)2LnxH2O, where 4-OHbenz = 4-hydroxybenzoate; L = isonicotinamide, N-methylnicotinamide, N,N-diethylnicotinamide, thiourea, urea, phenazone, theophylline, methyl-3-pyridylcarbamate; n = 2, 3; x = 0–3, 5, were synthesized and characterised by elemental analysis, thermal analysis and IR spectroscopy. The thermal behaviour of the prepared compounds was studied by TG/DTG and DTA methods in argon atmosphere. The thermal decomposition of hydrated compounds started with dehydration. During the thermal decomposition, organic ligand, carbon monoxide, carbon dioxide and phenol were evolved. The final solid product of the thermal decomposition was zinc or zinc oxide. The volatile gaseous product, solid intermediate products and the final product of thermal decomposition were identified by IR spectroscopy, mass spectrometry, qualitative chemical analyses and X-ray powder diffraction method. The antimicrobial activity of zinc(II) carboxylate compounds was tested against various strains of bacteria, yeasts and filamentous fungi (S. aureus, E. coli, C. parapsilosis, R. oryzae, A. alternata, M. gypseum). The presence of zinc in complexes led to the increase in their antimicrobial activity in comparison with free 4-hydroxybenzoic acid.  相似文献   

3.
New zinc(II) propionate complexes (CH3CH2COO)2Zn·Ln·xH2O, where n=1-2, x=0 or 2, were prepared by reaction of zinc(II) propionate with heterocyclic ligands (L=theophylline, nicotinamide, methyl-3-pyridyl carbamate) and their thermal properties were studied. The prepared complex compounds were characterized by elemental analysis and IR spectra. TG/DTG and DTA measurements of the prepared compounds were performed in the air atmosphere under dynamic conditions. The thermal decomposition can be characterized as a multi-step process. The first step is attributed to the elimination of water or N-donor ligand molecules. It is followed by the decomposition of propionate anion when diethyl ketone and carbon dioxide were released. Zinc oxide was found as a final product of the thermal decomposition of the complex compounds under study. The volatile intermediate products of the thermal decomposition of zinc(II) propionate complexes were identified by IR-spectroscopy, qualitative chemical analyses and final solid product by X-ray powder diffraction method. Moreover, IR spectra suggest monodentate coordination of propionate anion to zinc. The complexes were tested against bacteria and filamentous fungi and show both antimicrobial activity and fungistatic effect towards pathogens as well as probiotic activity towards Lactobacillus paracasei.  相似文献   

4.
The thermal decomposition of copper(II) complexes with salicylaldehyde S-methylthiosemicarbazone of general formula Cu(HL)X·nH2O (X=Py+NO3, NCS, 0.5SO4) and [Cu(L)NH3]·H2O was investigated in air atmosphere in the interval from room temperature to 1000°C. Decomposition of the complexes occurred in several successive endothermic and exothermic processes, and the residue was in all cases CuO.  相似文献   

5.
The thermal decomposition of the complexes Mg(SCN)2(2-OHpy)4·H2O(I), Mg(SCN)2(quin)4·2H2O(II) and Mg(SCN)(quinox)4·5H2O(III) (2-OHpy–2-hydroxypyridine, quin–quinoline, quinox–quinoxaline) has been investigated in static air atmosphere at 20–1000 °C by means of thermogravimetry (TG), differential thermal analysis (DTA), and infrared (IR) spectroscopy. The composition of the complexes had been identified by means of elemental analysis and complexometric titration. The possible scheme of destruction of the complexes is suggested. The final product of the thermal decomposition was MgS. IR data suggest that heterocyclic ligands were coordinated to Mg(II) through the nitrogen atom of their heterocyclic ring. Thiocyanate group is also coordinated through the nitrogen atom.  相似文献   

6.
The cefadroxil (Cef) complexes with transition divalent metals of the formula MCef·nH2O (where n=2 for M=Cu2+, Ni2+, Zn2+ and n=3 for Co2+) and CdCef1.5·4H2O were prepared and characterized by elemental and infrared spectra. The thermal analysis of the investigated complexes in air atmosphere was carried out by means of simultaneous TG-DSC technique. During heating in air they lose bound water molecules and then decompose to oxides: Co3O4, NiO, CuO, ZnO and CdO. The CdCef1.5·4H2O complex forms probably an intermediate product Cd2OSO4. The combined TG-FTIR technique was employed to study of decomposition pathway of the investigated complexes. The first mass loss step is the water loss of the complexes. Next, decomposition of cefadroxil ligand occurs with evolution of CO2 and NH3. At slightly higher temperature COS is observed according to decomposition of cephem ring. Additionally, as decomposition gaseous products: HCN, HNCO (HOCN), H2CNH, CO, SO2, hydrocarbons and carbonyl compounds were observed. The formation of metal sulfates is postulated as solid intermediate product of decomposition in the argon atmosphere. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The Stoichiometry of thermal decomposition was studied for the following compounds: Ni(NCS)2(pip)4 (I), (pip=piperidine), Ni(NCS)2(pip)2py·H2O (II), (py=piridine), Ni(NCS)2(4-Mepip)3 (III), Ni(NCS)2(3-Mepip)3 (IV) and Ni(NCS)2(3.5-Me2pip)3 (V). In complexes I, II, III and IV the loss of the volatile ligands (on the TG curve to 300 °C) occurs in three steps and in complex V in two steps. The loss of the last molecules of volatile ligands is accompanied by the decomposition of NCS groups. Spectral data and magnetic moment values for the initial complexes I and II (together with the defined intermediates) indicated pseudooctahedral configuration while pentacoordination for complexes III, IV and V. Structural changes of the complexes studied in thermal decomposition reactions are discussed.  相似文献   

8.
Solid complexes of five derivatives of thio-Schiff bases with La(III) and Ce(III) ions were prepared and characterized by elemental and thermogravimetric analyses. The suggested general formula of the solid complexes is [ML2(H2O)X]·2H2O, whereM=trivalent lanthanide ion,L=Schiff base andX=Cl? or ClO 4 ? . Information about the water of hydration, the coordinated water molecules, the coordination chemistry and the thermal stability of these complexes was obtained and is discussed. Additionally, a general scheme of thermal decomposition of the lanthanide-Schiff base complexes is proposed.  相似文献   

9.
This study is devoted to the thermal decomposition of ZnC2O4·2H2O, which was synthesized by solid-state reaction using C2H2O4·2H2O and Zn(CH3COO)2·2H2O as raw materials. The initial samples and the final solid thermal decomposition products were characterized by Fourier transform infrared and X-ray diffraction. The particle size of the products was observed by transmission electron microscopy. The thermal decomposition behavior was investigated by thermogravimetry, derivative thermogravimetric and differential thermal analysis. Experimental results show that the thermal decomposition reaction includes two stages: dehydration and decomposition, with nanostructured ZnO as the final solid product. The Ozawa integral method along with Coats–Redfern integral method was used to determine the kinetic model and kinetic parameters of the second thermal decomposition stage of ZnC2O4·2H2O. After calculation and comparison, the decomposition conforms to the nucleation and growth model and the physical interpretation is summarized. The activation energy and the kinetic mechanism function are determined to be 119.7 kJ mol?1 and G(α) = ?ln(1 – α)1/2, respectively.  相似文献   

10.
Two lactates and four new mixed ligand complexes with formulae Co(lact)2·2H2O, Ni(lact)2·3H2O, Co(4-bpy)(lact)2, Co(2,4'-bpy)2(lact)2, Ni(4-bpy)(lact)2·2H2O and Ni(2,4'-bpy)2(lact)2 (where 4-bpy=4,4'-bipyridine, 2,4'-bpy=2,4'-bipyridine, lact=CH3CH(OH)COO-) were isolated and investigated. The thermal behaviour of compounds was studied by thermal analysis (TG, DTG, DTA). In the case of hydrated complexes thermal decomposition starts with the release of water molecules. The compounds decompose at high temperature to metal(II) oxides in air. A coupled TG-MS system was used to analyse the principal volatile products of thermolysis and fragmentation processes of obtained complexes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Thorium(IV) complexes of the type Th(NO3)4·3L·2C2H5OH, Th(SCN)4·L·C2H5OH and Th(SO4)2·2L·2C2H5OH (L=1-butyl-1-methylpiperazinium iodide(I) have been synthesised. From thermogravimetric (TG) curves, the decomposition pattern of the compounds has been analysed. The order, activation energy and apparent activation entropy of the thermal decomposition reaction have been elucidated. The heat of reaction has been calculated from differential thermal analysis (DTA) studies.  相似文献   

12.
13.
Novel complexes of type M2LCl4·nH2O (M: Ni, n = 4; M: Cu, n = 2.5 and M: Zn, n = 1.5; L: ligand resulted from 1,3-phenylenediamine, 3,6-diazaoctane-1,8-diamine, and formaldehyde one-pot condensation) were synthesized and characterized. The ligand was also isolated and characterized. The complexes features have been assigned from microanalytical, electrospray ionization tandem mass spectrometry, IR, UV–vis, 1H NMR, and EPR spectra as well as magnetic data at room temperature. Simultaneous thermogravimetric/dynamic scanning calorimetry/evolved gas analysis measurements were performed to evidence the nature of the gaseous products formed in each step. Processes as water elimination, fragmentation, and oxidative degradation of the organic ligand as well as chloride elimination were observed during the thermal decomposition. The final product of decomposition was metal(II) oxide except for copper complex where CuCl remained also in the oxide network. The complexes exhibited an improved antibacterial activity in comparison with the ligand concerning both planktonic as well as biofilm-embedded cells.  相似文献   

14.
New copper (II) complexes of Schiff bases with 1,2-di(imino-2-aminomethylpyridil)ethane with the general composition CuLX m (H2O) x , [L = Schiff base, X = Cl?, Br?, NO3 ?, ClO4 ?, CH3COO?, m = 2; X = SO4 2?, m = 1] were prepared by template synthesis. The complexes were characterized by elemental analysis, conductivity measurements, magnetic moments, IR, UV–VIS and EPR spectra. The thermal behavior of complexes was studied using thermogravimetry (TG), differential thermal analysis (DTA) and differential scanning calorimetry (DSC). Infrared spectra of all complexes are in good agreement with the coordination of a neutral tetradentate N4 ligand to the cooper (II) through azomethinic and pyridinic nitrogen. Magnetic, EPR and electronic spectral studies show a monomeric distorted octahedral geometry for all Cu(II) complexes. Conductance measurements suggest the non-electrolytic nature of the compounds, except for copper (II) nitrate and perchlorate complexes which are 1:2 electrolytes. Heats of decomposition, ΔH, associated with the exothermal effects were also determined.  相似文献   

15.
New complexes of type [M(HL)(CH3COO)(OH2)m]·nH2O (where M:Co, m = 2, n = 2; M:Ni, m = 2, n = 1.5; M:Zn, m = 0, n = 2.5 and M:Cd, m = 0, n = 0; H2L:5-bromo-N,N′-bis-(salicylidene)-o-tolidine) have been synthesized and characterized by microanalytical, IR, UV–Vis-NIR and magnetic data. Electronic spectra of Co(II) and Ni(II) complexes are characteristic for an octahedral stereochemistry. The IR spectra indicate a chelate coordination mode for mono-deprotonated Schiff base and a bidentate one for acetate ion. The thermal transformations are complex according to TG and DTA curves including dehydration, acetate decomposition and oxidative degradation of the Schiff base. The final product of decomposition is the most stable metallic oxide.  相似文献   

16.
Pyridine derivative complexes are widely employed as biological active materials especially as antibacterial agents. Five transition metal(II) mpk complexes (mpk = methyl 2-pyridyl ketone) were synthesized and investigated using elemental analysis, spectroscopic techniques (IR and UV–Vis–NIR) and conductometric measurements. The general formulae established from experimental data were found to be [M(mpk)2(NO3)2xH2O (x = 0 for M = Cd(II), Zn(II), x = 2 for M = Cu(II)) and [M(mpk)2(H2O)2](NO3)2 (M = Co(II), Ni(II)). These compositions were further confirmed by thermal analysis and their thermal stability in dynamic air atmosphere investigated.  相似文献   

17.
The new 1,2,4-benzenetricarboxylates of lanthanide(III) of the formula Ln(btc)·nH2O, where btc is 1,2,4-benzenetricarboxylate; Ln is La-Lu, and n=2 for Ce; n=3 for La, Yb, Lu; and n=4 for Pr-Tm were prepared and characterized by elemental analysis, infrared spectra and X-ray diffraction patterns. Polycrystalline complexes are isotructural in the two groups: La-Tm and Yb, Lu. IR spectra of the complexes show that all carboxylate groups from 1,2,4-benzentricarboxylate ligands are engaged in coordination of lanthanide atoms. The thermal analysis of the investigated complexes in air atmosphere was carried out by means of simultaneous TG-DTA technique. The complexes are stable up to about 30°C but further heating leads to stepwise dehydration. Next, anhydrous complexes decompose to corresponding oxides. The combined TG-FTIR technique was employed to study of decomposition pathway of the investigated complexes.  相似文献   

18.
Nine rare earth citrate hydrates (RE(C6H5O7nH2O,RE=La, Nd, Sm) were prepared and characterized by chemical analysis, elementary analysis, thermal analysis and IR spectra. The thermal decomposition processes were studied by using TG-DTG and IR spectra techniques. Dehydration enthalpies and dehydration entropies of 3 neodymium and 3 samarium citrate hydrates were also determined by means of DSC.  相似文献   

19.
The lanthanide biphenyl-4,4′-dicarboxylates (bpdc) series of the general formulae Ln2(bpdc)3·nH2O, where Ln = lanthanides from La(III) to Lu(III); bpdc = C12H5(COO) 2 2? ; n = 4, 5 or 6 have been obtained by the conventional precipitation method. All prepared complexes were characterized by elemental analysis, simultaneous thermal analyses thermogravimetric-differential scanning calorimetry (TG–DSC) and TG–FT-IR, FT-IR, and FT-Raman spectroscopy as well as X-ray diffraction patterns measurements. In the whole series of analyzed complexes the bpdc2? ligand is completely deprotonated. In view of that, four carboxylate oxygen atoms are engaged in the coordination of Ln(III) ions. The synthesized compounds are polycrystalline and insoluble in water. They crystallize in the low symmetry crystal systems, like monoclinic and triclinic. Heating in the air atmosphere resulted in the multi-steps decomposition process, namely endothermic dehydration and strong exothermic decomposition processes. The dehydration process leads to the formation of stable anhydrous Ln2bpdc3 compounds which subsequently decompose to the corresponding lanthanide oxides.  相似文献   

20.
Novel complexes of M2LCl4·nH2O type (M:Ni, n = 4; M:Cu, n = 3 and M:Zn, n = 0; L: ligand resulted from 1,4-phenylenediamine, 3,6-diazaoctane-1,8-diamine and formaldehyde one-pot condensation) were synthesized and characterised by microanalytical, ESI–MS, IR, UV–Vis, 1H NMR and EPR spectra, magnetic data at room temperature and molar conductivities as well. The electrochemical behaviour of complexes was investigated by cyclic voltammetry. Simultaneous TG/DTA measurements were performed in order to evidence the thermal behaviour of the obtained complexes. Processes such as water elimination, fragmentation and oxidative degradation of the organic ligand as well as chloride elimination occurred during thermal decomposition. The antimicrobial assays demonstrate that the compounds exhibited good antibacterial activity, especially against S. aureus and E. coli strains, the most active being the copper(II) complex, which also exhibited the most prominent anti-biofilm effect, suggesting its potential use for the development of new antimicrobial agents. The biological activity was correlated with log P ow values. All complexes disrupt the membrane integrity of HCT 8 tumour cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号