首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A bifurcation analysis of a two-dimensional airfoil with a structural nonlinearity in the pitch direction and subject to incompressible flow is presented. The nonlinearity is an analytical third-order rational curve fitted to a structural freeplay. The aeroelastic equations-of-motion are reformulated into a system of eight first-order ordinary differential equations. An eigenvalue analysis of the linearized equations is used to give the linear flutter speed. The nonlinear equations of motion are either integrated numerically using a fourth-order Runge-Kutta method or analyzed using the AUTO software package. Fixed points of the system are found analytically and regions of limit cycle oscillations are detected for velocities well below the divergent flutter boundary. Bifurcation diagrams showing both stable and unstable periodic solutions are calculated, and the types of bifurcations are assessed by evaluating the Floquet multipliers. In cases where the structural preload is small, regions of chaotic motion are obtained, as demonstrated by bifurcation diagrams, power spectral densities, phase-plane plots and Poincaré sections of the airfoil motion; the existence of chaos is also confirmed via calculation of the Lyapunov exponents. The general behaviour of the system is explained by the effectiveness of the freeplay part of the nonlinearity in a complete cycle of oscillation. Results obtained using this reformulated set of equations and the analytical nonlinearity are in good agreement with previously obtained finite difference results for a freeplay nonlinearity.  相似文献   

2.
3.
A kind of 2-dimensional neural network model with delay is considered. By analyzing the distribution of the roots of the characteristic equation associated with the model, a bifurcation diagram was drawn in an appropriate parameter plane. It is found that a line is a pitchfork bifurcation curve. Further more, the stability of each fixed point and existence of Hopf bifurcation were obtained. Finally, the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions were determined by using the normal form method and centre manifold theory. Foundation item: the National Natural Science, Foundation of China (19831030) Biography: WEI Jun-jie, Professor, Doctor, E-mail: weijj@hit.edu.cn  相似文献   

4.
The bifurcation and chaos phenomena of two-dimensional airfoils with multiple strong nonlinearities are investigated.First,the strongly nonlinear square and cubic plunging and pitching stiffness terms are considered in the airfoil motion equations,and the fourth-order Runge-Kutta simulation method is used to obtain the numerical solutions to the equations.Then,a post-processing program is developed to calculate the physical parameters such as the amplitude and the frequency based on the discrete numerical solutions.With these parameters,the transition of the airfoil motion from balance,period,and period-doubling bifurcations to chaos is emphatically analyzed.Finally,the critical points of the period-doubling bifurcations and chaos are predicted using the Feigenbaum constant and the first two bifurcation critical values.It is shown that the numerical simulation method with post-processing and the prediction procedure are capable of simulating and predicting the bifurcation and chaos of airfoils with multiple strong nonlinearities.  相似文献   

5.
Flow past multi-element airfoil is studied via two-dimensional numerical simulations. The incompressible Reynolds averaged Navier–Stokes equations, in primitive variables, are solved using a stabilized finite element formulation. The Spalart–Allmaras and Baldwin–Lomax models are employed for turbulence closure. The implementation of the Spalart–Allmaras model is verified by computing flow over a flat plate with a specified trip location. Good agreement is seen between the results obtained with the two models for flow past a NACA 0012 airfoil at 5° angle of attack. Results for the multi-element airfoil, with the two turbulence models, are compared with experiments for various angles of attack. In general, the pressure distribution, from both the models matches quite well with the experimental results. However, at larger angles of attack, the computational results overpredict the suction peak on the slat. The velocity profiles from the Baldwin–Lomax model are, in general, more diffused compared to those from the Spalart–Allmaras model. The agreement between the computed and experimental results is not too good in the flap region for large angles of attack. Both the models are unable to predict the stall; the flow remains attached even for relatively large angles of attack. Consequently, the lift coefficient is over predicted at large α by the computations. Overall, compared to the Baldwin–Lomax model, the predictions from the Spalart–Allmaras model are closer to experimental measurements.  相似文献   

6.
The problem of designing the contour of an airfoil in a viscous (incompressible and compressible) flow with a separated turbulent boundary layer from a pressure distribution given on the separationless part of the contour is solved using the boundary layer theory together with the separated flow model proposed in [1]. Numerical calculations are carried out to demonstrate the possibilities of the method.Kazan'. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.3, pp. 83–91, May–June, 1994.  相似文献   

7.
The development of viscous flow in a curved duct under variation of the axial pressure gradient q is studied. We confine ourselves to two‐dimensional solutions of the Dean problem. Bifurcation diagrams are calculated for rectangular and elliptic cross sections of the duct. We detect a new branch of asymmetric solutions for the case of a rectangular cross section. Furthermore we compute paths of quadratic turning points and symmetry breaking bifurcation points under variation of the aspect ratio γ (γ=0.8…1.5). The computed diagrams extend the results presented by other authors. We succeed in finding two origins of the Hopf bifurcation. Making use of the Cayley transformation, we determine the stability of stationary laminar solutions in the case of a quadratic cross section. All the calculations were performed on a parallel computer with 32×32 processors. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
A numerical analysis of flow and concentration fields of macromolecules in a, slightly curved blood vessel was carried out. Based on these results, the effect of the bifurcation of a flow on the mass transport in a curved blood vessel was discussed. The macromolecules turned out to be easier to deposit in the inner part of the curved blood vessel near the critical Dean number. Once the Dean number is higher than the critical number, the bifurcation of the flow appears. This bifurcation can prevent macromolecules from concentrating in the inner part of the curved blood vessel. This result is helpful for understanding the possible correlations between the blood dynamics and atherosclerosis. The project supported by National Natural Science Foundation of China (10002003), JSPS Postdoctoral Fellowship for Foreign Researcher and Foundation for University Teachers, the Ministry of Education  相似文献   

9.
Predictions are presented of the two-dimensional turbulent flow over a triangular ridge. The time-averaged Reynolds equations are written in an orthogonal curvilinear co-ordinate system and transformed to finite difference form after discretization in physical space. Turbulence is simulated by the two-equation κ-ε model of turbulence. In the first part of the paper the basics of the numerical method are presented and in the second part comparisons are made between predictions and available laboratory data. Therefore the validity and reliability of the method as well as its flexibility in treating complex recirculating flows are assessed. Results of engineering significance are presented of the effect of the ridge slope on the length of the recirculation region and on the overspeed factor on top of the ridge.  相似文献   

10.
This paper presents a novel mechanical attachment, i.e., nonlinear energy sink (NES), for suppressing the limit cycle oscillation (LCO) of an airfoil. The dynamic responses of a two-degree-of-freedom (2-DOF) airfoil coupled with an NES are studied with the harmonic balance method. Different structure parameters of the NES, i.e., mass ratio between the NES and airfoil, NES offset, NES damping, and nonlinear stiffness in the NES, are chosen for studying the effect of the LCO suppression on an aeroelastic system with a supercritical Hopf bifurcation or subcritical Hopf bifurcation, respectively. The results show that the structural parameters of the NES have different influence on the supercritical Hopf bifurcation system and the subcritical Hopf bifurcation system.  相似文献   

11.
12.
The dynamic aeroelastic behavior of an elastically supported airfoil is studied in order to investigate the possibilities of increasing critical flutter speed by exploiting its chord-wise flexibility. The flexible airfoil concept is implemented using a rigid airfoil-shaped leading edge, and a flexible thin laminated composite plate conformally attached to its trailing edge. The flutter behavior is studied in terms of the number of laminate plies used in the composite plate for a given aeroelastic system configuration. The flutter behavior is predicted by using an eigenfunction expansion approach which is also used to design a laminated plate in order to attain superior flutter characteristics. Such an airfoil is characterized by two types of flutter responses, the classical airfoil flutter and the plate flutter. Analysis shows that a significant increase in the critical flutter speed can be achieved with high plunge and low pitch stiffness in the region where the aeroelastic system exhibits a bimodal flutter behavior, e.g., where the airfoil flutter and the plate flutter occur simultaneously. The predicted flutter behavior of a flexible airfoil is experimentally verified by conducting a series of systematic aeroelastic system configurations wind tunnel flutter campaigns. The experimental investigations provide, for each type of flutter, a measured flutter response, including the one with indicated bimodal behavior.  相似文献   

13.
Ji  J. C. 《Nonlinear dynamics》2001,25(4):369-382
It is well known that saddle-node bifurcations can occur in the steady-state response of a forced single-degree-of-freedom (SDOF) nonlinear system in the cases of primary and superharmonic resonances. This discontinuous or catastrophic bifurcation can lead to jump and hysteresis phenomena, where at a certain interval of the control parameter, two stable attractors exist with an unstable one in between. A feedback control law is designed to control the saddle-node bifurcations taking place in the resonance response, thus removing or delaying the occurrence of jump and hysteresis phenomena. The structure of candidate feedback control law is determined by analyzing the eigenvalues of the modulation equations. It is shown that three types of feedback – linear, nonlinear, and a combination of linear and nonlinear – are adequate for the bifurcation control. Finally, numerical simulations are performed to verify the effectiveness of the proposed feedback control.  相似文献   

14.
In order to increase the accuracy of turbulence field reconstruction, this paper combines experimental observation and numerical simulation to develop and establish a data assimilation framework, and apply it to the study of S809 low-speed and high-angle airfoil flow. The method is based on the ensemble transform Kalman filter(ETKF) algorithm, which improves the disturbance strategy of the ensemble members and enhances the richness of the initial members by screening high flow field sensitivity ...  相似文献   

15.
The present paper is devoted to the computation of turbulent flows by a Galerkin finite element method. Effects of turbulence on the mean field are taken into account by means of a (k-ε) turbulence model. The wall region is treated through wall laws and, more specifically, Reichardt's law. An inlet profile for ε is proposed as a numerical treatment for physically meaningless values of k and ε. Results obtained for a recirculating flow in a two-dimensional channel with a sudden expansion in width are presented and compared with experimental values.  相似文献   

16.
A wind tunnel experimental investigation of self-sustained oscillations of an aeroelastic NACA0012 airfoil occurring in the transitional Re regime is presented. To the authors’ knowledge this is the first time that aeroelastic limit cycle oscillations (LCOs) associated with low Re effects have been systematically studied and reported in the public literature. While the aeroelastic apparatus is capable of two-degree-of-freedom pitch-plunge motion, the present work concerns only the motion of the airfoil when it is constrained to rotate in pure pitch. The structural stiffness is varied as well as the position of the elastic axis; other parameters such as surface roughness, turbulence intensity and initial conditions are also briefly discussed. In conjunction with the pitch measurements, the flow is also recorded using hot-wire anemometry located in the wake at a distance of one chord aft of the trailing edge. It is observed that for a limited range of chord-based Reynolds numbers, 4.5×104Rec1.3×105, steady state self-sustained oscillations are observed. Below and above that range, these oscillations do not appear. They are characterized by a well-behaved harmonic motion, whose frequency can be related to the aeroelastic natural frequency, low amplitude (θmax<5.5°) and some sensitivity to flow perturbations and initial conditions. Furthermore, hot-wire measurements for the wing held fixed show that no periodicity in the undisturbed free-stream nor in the wake account for the oscillations. Overall, these observations suggest that laminar separation plays a role in the oscillations, either in the form of trailing edge separation or due to the presence of a laminar separation bubble.  相似文献   

17.
This paper is devoted to the computation of turbulent flows by a Galerkin finite element method. Effects of turbulence on the mean field are taken into account by means of a k-? turbulence model. The wall region is treated through wall laws and, more specifically, Reichardt's law. An inlet profile for ? is proposed as a numerical treatment for physically meaningless values of k and ?. Results obtained for a recirculating flow in a two-dimensional channel with a sudden expansion in width are presented and compared with experimental values.  相似文献   

18.
Based on the piston theory of supersonic flow and the energy method, a two dimensional wing with a control surface in supersonic flow is theoretically modeled, in which the cubic stiffness in the torsional direction of the control surface is considered. An approximate method of the cha- otic response analysis of the nonlinear aeroelastic system is studied, the main idea of which is that under the condi- tion of stable limit cycle flutter of the aeroelastic system, the vibrations in the plunging and pitching of the wing can approximately be considered to be simple harmonic excita- tion to the control surface. The motion of the control surface can approximately be modeled by a nonlinear oscillation of one-degree-of-freedom. The range of the chaotic response of the aeroelastic system is approximately determined by means of the chaotic response of the nonlinear oscillator. The rich dynamic behaviors of the control surface are represented as bifurcation diagrams, phase-plane portraits and PS diagrams. The theoretical analysis is verified by the numerical results.  相似文献   

19.
Duffing-van der Pol系统的随机分岔   总被引:1,自引:0,他引:1  
李爽  徐伟  李瑞红 《力学学报》2006,38(3):429-432
应用广义胞映射图论方法(GCMD)研究了在谐和激励与随机噪声共同作用下的Duffing-van der Pol系统的随机分岔现象. 系统参数选择在多个吸引子与混沌鞍共存的范围内. 研究发现, 随着随机激励强度的增大,该系统存在两种分岔现象: 一种为随机吸引子与吸引域边界上的鞍碰撞, 此时随机吸引子突然消失; 另一种为随机吸引子与吸引域内部的鞍碰撞, 此时随机吸引子突然增大. 研究证实, 当随机激励强度达到某一临界值时, 该系统还会发生D-分岔(基于Lyapunov指数符号的改变而定义), 此类分岔点不同于上述基于系统拓扑性质改变所得的分岔点.  相似文献   

20.
This paper presents a manufactured solution (MS), resembling a two-dimensional, steady, wall-bounded, incompressible, turbulent flow for RANS codes verification. The specified flow field satisfies mass conservation, but requires additional source terms in the momentum equations. To also allow verification of the correct implementation of the turbulence models transport equations, the proposed MS exhibits most features of a true near-wall turbulent flow. The model is suited for testing six eddy-viscosity turbulence models: the one-equation models of Spalart and Allmaras and Menter; the standard two-equation k–ε model and the low-Reynolds version proposed by Chien; the TNT and BSL versions of the k–ω model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号