首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A virtual Taylor impact of cellular materials is analyzed with a wave propagation technique, i.e. the Lagrangian analysis method, of which the main advantage is that no pre-assumed constitutive relationship is required. Time histories of particle velocity, local strain, and stress profiles are calculated to present the local stress–strain history curves, from which the dynamic stress–strain states are obtained.The present results reveal that the dynamic-rigid-plastic hardening(D-R-PH) material model introduced in a previous study of our group is in good agreement with the dynamic stress–strain states under high loading rates obtained by the Lagrangian analysis method. It directly reflects the effectiveness and feasibility of the D-R-PH material model for the cellular materials under high loading rates.  相似文献   

2.
The aim of this article is the analysis of fracture growth in media characterized by random distribution of micro-failure mechanisms per unit volume. The deformation behavior of the material was investigated in terms of a spherical unit cell model, containing an initially spherical cell of porous. The effective elastic bulk modulus as a function of micro-failures concentration was computed and using the Griffith critirium and certain boundary conditions the rate at which the void area varies was determined too. Along the analysis a special form of the strain energy function for compressible Blatz–Ko material was used. The applied traction on the unit cell of the material was determined as a function of the porosity of the material, as well as the strain field within the solid. At low values of the porosity, as the applied external traction was increased instabilities were observed in the void growth.  相似文献   

3.
Two approaches to the analysis of the stress–strain state of thick cylindrical shells are elaborated. The shell is divided by concentric cross-sectional circles into several coaxial cylindrical shells. Each of these shells has its own curvature determined on its midline. The stress–strain state of the original shell is described by satisfying the interface conditions between the component shells. The distribution of unknown functions throughout the thickness is determined by finding the analytic solution of a system of differential equations in the first approach and is approximated by polynomial functions in the second approach. The stress–strain state of thick shells is analyzed. It is revealed that the effect of reduction becomes stronger with increasing curvature  相似文献   

4.
A simple method is established to determine the microscale uniaxial stress–strain curve from the load and deflection data for a doubly clamped beam. The method is based on the fact that, for beam deflection much larger than the beam thickness, the axial stretching dominates the deformation in the doubly clamped beam and the doubly clamped beam behaves like a simple plastic hinge. The microscale uniaxial stress–strain curve, together with the cantilever beam experiments, is used to determine the strain gradient effect in Au thin beams. The effect of finite rotation is also discussed.  相似文献   

5.
We obtain the linear viscoelastic shear moduli of complex fluids from the time-dependent mean square displacement, <Δr 2(t)>, of thermally-driven colloidal spheres suspended in the fluid using a generalized Stokes–Einstein (GSE) equation. Different representations of the GSE equation can be used to obtain the viscoelastic spectrum, G˜(s), in the Laplace frequency domain, the complex shear modulus, G *(ω), in the Fourier frequency domain, and the stress relaxation modulus, G r (t), in the time domain. Because trapezoid integration (s domain) or the Fast Fourier Transform (ω domain) of <Δr 2(t)> known only over a finite temporal interval can lead to errors which result in unphysical behavior of the moduli near the frequency extremes, we estimate the transforms algebraically by describing <Δr 2(t)> as a local power law. If the logarithmic slope of <Δr 2(t)> can be accurately determined, these estimates generally perform well at the frequency extremes. Received: 8 September 2000/Accepted: 9 March 2000  相似文献   

6.
This paper revisits the elastic–viscoelastic correspondence principle for non-homogeneous materials. Several recent publications discussed this principle for functionally graded materials (FGMs) with time translation invariant viscoelastic properties. It was demonstrated that the correspondence principle is valid only for the FGMs with separable relaxation moduli (moduli in separable form in space and time). This paper reconsiders this issue. It shows that the correspondence principle is valid even for non-homogeneous materials with separable relaxation moduli even if the time-dependences of the relaxation moduli in shear and dilatation are not necessarily time translation invariant. The property of similarity of Volterra operators is used to obtain the corresponding elastic solution. The correspondence is established between the elastic solution and the operator-transformed viscoelastic solution. The transformation operators are combinations of the Laplace transform operator and additional integral operators.  相似文献   

7.
Explicit expressions for residual functional gradients are derived. They are used to identify, using gradient methods, the parameters of elastic problems for multicomponent bodies. The method employs the solutions of conjugate problems in the theory (developed by the authors) of optimal control of distributed multicomponent systems  相似文献   

8.
A modification of the Kolsky method with the use of the split Hopkinson bar is proposed, which allows testing lowdensity materials under cyclic loads of an identical sign. Cyclic dynamic testing of specimens is based on the essential difference of acoustic impedances of the material of the specimen tested from the material of pressure bars. The choice of the supportbar length several times greater than the loadingbar length allows registration of strain pulses in several cycles. Results are presented for the proposed modification of the Kolsky method used for tests in compression of foam plastic of two densities under three loading cycles.  相似文献   

9.
Many instruments used to measure viscoelastic properties are only capable of subjecting a sample to a limited range of loading frequencies. For thermorheologically simple materials, it is assumed that a change in temperature is equivalent to a shift of the viscoelastic behavior on the log frequency or time axis. For many materials, time–temperature superposition appears to work well for modulus or compliance curves over three decades of time or frequency, but some deviations are known if the window is expanded to five or six decades. To apply a more stringent test of the validity of time–temperature superposition, broadband viscoelastic spectroscopy is used to isothermally study polymethylmethacrylate and low-density polyethylene at several temperatures in the glassy region. Shear modulus and damping (tan δ) are measured isothermally over a wide range (up to 11 decades) of time and frequency. Results indicate that, while modulus curves can be approximately superimposed, the damping (tan δ) curves change in height and shape with temperature.  相似文献   

10.
In 1958, Jeffreys (Geophys J?R Astron Soc 1:92–95) proposed a power law of creep, generalizing the logarithmic law earlier introduced by Lomnitz, to broaden the geophysical applications to fluid-like materials including igneous rocks. This generalized law, however, can be applied also to solid-like viscoelastic materials. We revisit the Jeffreys–Lomnitz law of creep by allowing its power law exponent α, usually limited to the range 0?≤?α?≤?1 to all negative values. This is consistent with the linear theory of viscoelasticity because the creep function still remains a Bernstein function, that is positive with a completely monotone derivative, with a related spectrum of retardation times. The complete range α?≤?1 yields a continuous transition from a Hooke elastic solid with no creep $\left(\alpha \,\to\, -\infty\right)$ to a Maxwell fluid with linear creep $\left(\alpha \,=\,1\right)$ passing through the Lomnitz viscoelastic body with logarithmic creep $\left(\alpha\, =0\right)$ , which separates solid-like from fluid-like behaviors. Furthermore, we numerically compute the relaxation modulus and provide the analytical expression of the spectrum of retardation times corresponding to the Jeffreys–Lomnitz creep law extended to all α?≤?1.  相似文献   

11.
The nonlinear vibrations of viscoelastic Euler–Bernoulli nanobeams are studied using the fractional calculus and the Gurtin–Murdoch theory. Employing Hamilton's principle, the governing equation considering surface effects is derived. The fractional integro-partial differential governing equation is first converted into a fractional–ordinary differential equation in the time domain using the Galerkin scheme. Thereafter, the set of nonlinear fractional time-dependent equations expressed in a state-space form is solved using the predictor–corrector method. Finally, the effects of initial displacement, fractional derivative order, viscoelasticity coefficient, surface parameters and thickness-to-length ratio on the nonlinear time response of simply-supported and clamped-free silicon viscoelastic nanobeams are investigated.  相似文献   

12.
13.
The problem of bending of beveled circular cylindrical shells is solved by parametrizing the shell and reducing the two-dimensional boundary-value problem to a one-dimensional one by the spline-collocation method. This problem is solved by the stable discrete-orthogonalization method. The effect of the variability of the geometrical parameters on the displacement fields of circular cylinders is analyzed  相似文献   

14.
15.
Viscoelastic (VE) materials are widely used in daily life. For the effective utilization of VE materials, it is necessary to know their viscoelasticity with accuracy over a wide range of frequencies, especially for high frequencies. Currently, the viscoelasticity of solid-state materials is directly measured only in the low-frequency range; for high frequencies, it is estimated based on the time-temperature superposition (TTS) principle. However, it is generally recognized that the TTS principle is suitable only for estimating the viscoelasticity of rheologically simple materials for temperatures within a limited range that is higher than the glass-transition temperature. In this paper, we propose a device that can directly measure the shear modulus and tan δ values of solid-state VE materials at high frequencies. We also propose a method for compensating for the shear deformation mode resonance of VE materials based on the mass of the moving part, to gain a more accurate understanding of viscoelasticity in the high-frequency range, and discuss the causes of errors in the compensation method. Finally, we report the VE properties of natural rubber (NR 65 IRHD) measured using the developed device and compensation method, and compare the measured results with those obtained using commercial VE measurement equipment.  相似文献   

16.
The interaction of a planar shock wave with a spherical density inhomogeneity is studied experimentally under reshock conditions. Reshock occurs when the incident shock wave, which has already accelerated the spherical bubble, reflects off the tube end wall and reaccelerates the inhomogeneity for a second time. These experiments are performed at the Wisconsin Shock Tube Laboratory, in a 9m-long vertical shock tube with a large square cross section (25.4×25.4 cm2). The bubble is prepared on a pneumatically retracted injector and released into a state of free fall. Planar diagnostic methods are used to study the bubble morphology after reshock. Data are presented for experiments involving two Atwood numbers (A = 0.17 and 0.68) and three Mach numbers (1.35 < M < 2.33). For the low Atwood number case, a secondary vortex ring appears immediately after reshock which is not observed for the larger Atwood number. The post-reshock vortex velocity is shown to be proportional to the incident Mach number, M, the initial Atwood number, A, and the incident shock wave speed, W i.  相似文献   

17.
Korayem  M. H.  Dehkordi  S. F. 《Nonlinear dynamics》2017,89(3):2041-2064
Nonlinear Dynamics - In this paper, the motion analysis of a viscoelastic manipulator with N-flexible revolute–prismatic joints is being studied with the help of a systematic algorithm. The...  相似文献   

18.
The plane problem for a cracked body with a piecewise-linear stress–strain diagram under tension is reduced by the Fourier transformation to a system of nonlinear algebraic equations. The system is numerically solved for plane strain and stress states of a perfect elastoplastic material to study plastic zones, stress and strain distributions, and displacements of crack faces  相似文献   

19.
This article examines the extensional flow and viscosity and the converging–diverging geometry as the basis of the peculiar viscoelastic behavior in porous media. The modified Bautista–Manero model, which successfully describes elasticity, thixotropic time dependency and shear-thinning, was used for modeling the flow of viscoelastic materials which also show thixotropic attributes. An algorithm, originally proposed by Philippe Tardy, that employs this model to simulate steady-state time-dependent flow was implemented in a non-Newtonian flow simulation code using pore-scale modeling. The simulation results using two topologically-complex networks confirmed the importance of the extensional flow and converging–diverging geometry on the behavior of non-Newtonian fluids in porous media. The analysis also identified a number of correct trends (qualitative and quantitative) and revealed the effect of various fluid and flow parameters on the flow process. The impact of some numerical parameters was also assessed and verified.  相似文献   

20.
To simulate metal-forming processes, one has to calculate the stress–strain state of the metal, i.e. to solve the relevant boundary-value problems. Progress in the theory of plasticity in that respect is well known, for example, via the slip-line method, the finite element method, etc.) , yet many unsolved problems remain. It is well known that the slip-line method is scanty. In our opinion the finite element method has an essential drawback. (No one is against the idea of the discretization of the body being deformed and the approximation of the fields of mechanical variables.) The results of calculation of the stress state by the FEM do not satisfy Newtonian mechanics equations (these equations are said to be softened, i.e, satisfied approximately) and stress fields can be considered poor for solution of the subsequent fracture problem. We believe that it is preferable to construct an approximate solution by the FEM and soften the constitutive relations (not Newtonian mechanics equations) , especially as, in any event, they describe the rheology of actual deformable materials only approximately. We seem to have succeeded in finding the solution technique.Here we present some new results for solving rather general boundary-value problems which can be characterized by the following: the anisotropy of the materials handled; the heredity of their properties and compressibility; finite deformations; non-isothermal flow; rapid flow, with inertial forces; a non-stationary state; movable boundaries; alternating and non-classical boundary conditions, etc.Solution by the method proposed can be made in two stages: (1) integration in space with fixed time, with an accuracy in respect of some parameters; (2) integration in time of certain ordinary differential equations for these parameters.In the first stage the method is based on the principle of virtual velocities and stresses. It is proved that a solution does exist and that it is the only possible one. The approximate solution softens (approximately satisfies) the constitutive relations, all the rest of the equations of mechanics being satisfied precisely. The method is illustrated by some test examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号