首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Currently, the nuclear industry needs strongly a reliable detection system to continuously monitor a coolant leak during a normal operation of reactors for the ensurance of nuclear safety. In this work, we propose a new device for the coolant leak detection based on tunable diode laser spectroscopy (TDLS) by using a compact diode laser. For the feasibility experiment, we established an experimental setup consisted of a near-IR diode laser with a wavelength of about 1392 nm, a home-made multi-pass cell and a sample injection system. The feasibility test was performed for the detection of the heavy water (D2O) leaks which can happen in a pressurized heavy water reactor (PWHR). As a result, the device based on the TDLS is shown to be operated successfully in detecting a HDO molecule, which is generated from the leaked heavy water by an isotope exchange reaction between D2O and H2O. Additionally, it is suggested that the performance of the new device, such as sensitivity and stability, can be improved by adapting a cavity enhanced absorption spectroscopy and a compact DFB diode laser. We presume that this laser-based leak detector has several advantages over the conventional techniques currently employed in the nuclear power plant, such as radiation monitoring, humidity monitoring and FT-IR spectroscopy.  相似文献   

2.
Laser diode line widths and line shapes are experimentally investigated in dependence on the diode current and on back reflections from an optical system. Four distributed-feedback (DFB)-type diode lasers and two vertical-cavity surface-emitting lasers (VCSELs) have been tested within the same optical setup and using the same fitting methods. System back reflection ratios of light reflected back to the laser have been varied between ?1?dB and ?45?dB and were below ?60?dB when all reflections were blocked. The background of this investigation is the evaluation of different laser types with respect to their suitability for sensor applications in which optical back reflections may occur, for example tunable diode-laser spectroscopy (TDLS). While DFB-type lasers showed almost pure Lorentzian line shapes and line widths of a few MHz, the tested VCSELs had a strong Gaussian contribution to the line shape, indicating stronger 1/f noise, which was also observed in the relative intensity noise of these particular lasers. System reflection ratios above ?25?dB had strong effects on the line width in both DFB diode lasers and VCSELs, while some influences have been observed at even lower reflection ratios for DFB diode lasers. As much smaller reflection ratios are typically required in TDLS systems to avoid etalon-like fringes and self-mixing interference effects, we conclude that the influence on the line width is not the most important reason to minimize back reflections in practical TDLS systems or to choose one type of diode laser over the other.  相似文献   

3.
The Federal Agency for Hydrometeorology of the Russian Federation created the flying laboratory on board the passenger airplane Yak-42D for geophysical monitoring of the environment, including aircraft measurements of vertical concentrations of greenhouse gases in the troposphere. Within the limits of this project, General Physics Institute of the Russian Academy of Science developed airborne tunable diode laser spectrometer (TDLS) on the basis of diode lasers of a near-IR range for measurement of the altitude profiles of CO2, CH4, H2O and its isotopes. TDLS complex was integrated aboard in standard 19-in. rack. Air samples, taken over an aircraft on the pipeline, were injected into the optical cell. Using the system of inflow and heating, the air was set laminar with a flowrate of 0.2?l/s at a reduced pressure of 100?mbar for detecting narrow absorption lines of water vapor isotopes. For registration of the absorption spectra and for the measurement of greenhouse gas concentrations in online mode, modulation-correlation technique was used. Diode laser spectrometer output data were transferred to the airborne central computer. Sensitivity of TDLS measurements was 20?C30?ppm for water, 3?C4?ppm for CO2 and 20?C25?ppb for CH4. Time of one-unit measurement is about 30?ms.  相似文献   

4.
This paper describes the effects of optical feedback on the sensitivity of VCSEL tunable-diode laser spectroscopy (TDLS). Three VCSELs, emitting at different wavelengths in the near-infrared, were used. A TDLS system, subjected to optical feedback, exhibited a common signal-to-noise ratio profile for all three lasers. A catastrophic degradation of TDLS sensitivity occurred when feedback exceeded a level which we associate with coherence collapse. The TDLS system had a CH4 minimum detection limit of 7.5 ppmm without optical feedback. Optical feedback of less than ten percent reduced this sensitivity by two orders of magnitude. This reduction of system sensitivity was accompanied by a second-harmonic absorption signal baseline shift which degraded the system accuracy.  相似文献   

5.
A variety of laser-based standoff techniques are currently being developed for the detection of explosives. Many approaches focus on the detection of NO as an indicator for the presence of nitro-based explosives. One of these approaches uses lasers to vaporize the explosive molecules residing at or near a surface, photo-dissociate the molecules resulting in vibrationally hot NO, and then perform laser-induced fluorescence on the vibrationally hot NO. Most related reports have focused on using 236 nm or 247–248 nm for the laser excitation of vibrationally hot NO. In addition, a recent report suggests the use of 532 nm to desorb, vaporize, and photo-fragment explosive samples. We report here on energy transfer from laser-excited N2 to NO and its consequences for the detection of nitro-based explosives. A potential interference mechanism was found for using 532 nm and 236 nm. The interference mechanism is based upon multi-photon excitation (532 nm) or two-photon excitation (236 nm) into excited states of molecular nitrogen and subsequent energy transfer from nitrogen to NO, followed by NO luminescence. Such interference mechanisms highlight the complexity of the explosive detection problem and the need for complementary approaches to improve the detection capabilities.  相似文献   

6.
Using recently developed GaInAsSb/AlGaInAsSb DFB lasers, tunable diode laser spectroscopy (TDLS) has been extended into the 3-??m wavelength region for the detection of acetylene impurities in hydrocarbon compounds encountered in ethylene manufacturing. Measurements of acetylene in pure polymer grade ethylene and in a gas mixture of ethylene and ethane typical of the process stream around a hydrogenation reactor have been performed. Using a procedure incorporating subtraction of a hydrocarbon background spectrum a detection limit of 5?ppb?m was achieved under ordinary laboratory conditions. Under forced temperature cycling conditions, the detection limit deteriorated to 180 ppb?m, due to temperature drift caused by optical interferences generated by reflections in the laser TO8 can.  相似文献   

7.
Detection of explosives is an important challenge for contemporary science and technology of security systems. We present an application of NOx sensors equipped with concentrator in searching of explosives. The sensors using CRDS with blue — violet diode lasers (410 nm) as well as with QCL lasers (5.26 μm and 4.53 μm) are described. The detection method is based either on reaction of the sensors to the nitrogen oxides emitted by explosives or to NOx produced during thermal decomposition of explosive vapours. For TNT, PETN, RDX, and HMX the detection limit better than 1 ng has been achieved.  相似文献   

8.
We have studied the effects of random laser speckle and self-mixing interference on TDLS based gas measurements made using integrating spheres. Details of the theory and TDLS apparatus are given in Part 1 of this paper and applied here to integrating spheres. Experiments have been performed using two commercial integrating spheres with diameters of 50 mm and 100 mm for the detection of methane at 1651 nm. We have calculated the expected levels of laser speckle related uncertainty, considered to be the fundamental limiting noise, and imaged subjective laser speckle in a sphere using different sized apertures. For wavelength modulation spectroscopy, noise equivalent absorbances (NEAs) of around 5×10?5 were demonstrated in both cases, corresponding to limits of detection of 1.2 ppm methane and 0.4 ppm methane respectively. Longer-term drift was found to be at an NEA of 4×10?4. This lies within our broad range of expectations. For a direct spectral scan with no wavelength dither, a limit of detection of 75 ppm or fractional measured power uncertainty of 3×10?3 corresponded well with our prediction for the objective speckle uncertainty.  相似文献   

9.
In the present work we report on spectroscopic properties and laser results of GaN laser diode pumped Pr:YAlO3 crystal at room temperature. The polarization-resolved absorption and emission spectra have been recorded and the decay time of the 3 P 0 manifold has been measured. Three samples with different Pr3+-ion concentrations in YAP matrix have been tested and compared. The best results were achieved for 0.6 at. % Pr3+-ion doping: an output power of 91 mW at 746.9-nm wavelength with a maximum slope efficiency of 45% with respect to the absorbed power.  相似文献   

10.
Three types of lasers (double-heterostructure 66 K InAsSb/InAsSbP laser diode, room temperature, multi quantum wells with distributed feedback (MQW with DFB) (GaInAsSb/AlGaAsSb based) diode laser and vertical cavity surface emitting lasers (VCSELs) (GaSb based) have been characterized using Fourier transform emission spectroscopy and compared. The photoacoustic technique was employed to determine the detection limit of formaldehyde (less than 1 ppmV) for the strongest absorption line of the v3 + v5 band in the emission region of the GaInAsSb/AlGaAsSb diode laser. The detection limit (less than 10 ppbV) of formaldehyde was achieved in the 2820 cm−1 spectral range in case of InAsSb/InAsSbP laser (fundamental bands of v1, v5). Laser sensitive detection (laser absorption together with high resolution Fourier transform infrared technique including direct laser linewidth measurement, infrared photoacoustic detection of neutral molecules (methane, form-aldehyde) is discussed.  相似文献   

11.
With a diode laser we have studied the spectral region around 921 cm–1 of the CF2Cl2 molecule cooled in a free jet. Accurate studies of the intensity of two vibrorotational bands have enabled us to determine their assignment. In addition, the rotational structure has been partially resolved, and approximate fitting parameters have been deduced. The simultaneous use of a diode laser and a free jet has proved to be useful in correctly identifying the origin of the absorption bands.  相似文献   

12.
A thermal model to describe high-power nanosecond pulsed laser ablation of yttria (Y2O3) has been developed. This model simulates ablation of material occurring primarily through vaporization and also accounts for attenuation of the incident laser beam in the evolving vapor plume. Theoretical estimates of process features such as time evolution of target temperature distribution, melt depth and ablation rate and their dependence on laser parameters particularly for laser fluences in the range of 6 to 30 J/cm2 are investigated. Calculated maximum surface temperatures when compared with the estimated critical temperature for yttria indicate absence of explosive boiling at typical laser fluxes of 10 to 30 J/cm2. Material ejection in large fragments associated with explosive boiling of the target needs to be avoided when depositing thin films via the pulsed laser deposition (PLD) technique as it leads to coatings with high residual porosity and poor compaction restricting the protective quality of such corrosion-resistant yttria coatings. Our model calculations facilitate proper selection of laser parameters to be employed for deposition of PLD yttria corrosion-resistive coatings. Such coatings have been found to be highly effective in handling and containment of liquid uranium.  相似文献   

13.
A compact multi-component trace-gas detector based on the resonant photoacoustic technique and a NIR external cavity diode laser has been developed. It has been characterized using a mixture of ethylene and methane diluted in ambient air. A spectroscopic investigation of combination bands and overtones between 5900 and 6250 cm-1, obtained with an IR pulsed laser photoacoustic spectrometer, allowed us to find a wavelength region where the 2ν3 overtone of CH4 and the ν59 combination band of C2H4 show uncongested rotational lines. Using a single-mode scan of the diode laser in this region, around 6150 cm-1, the sensitivity for the simultaneous detection of ethylene and methane is 8 ppm/mW and 40 ppm/mW respectively. Factors affecting the sensitivity and selectivity of the detection system and possible improvements suitable to reach the sub-ppm detection limit are discussed. Received: 1 August 2001 / Revised version: 28 November 2001 / Published online: 7 February 2002 An erratum to this article is available at .  相似文献   

14.
Optical feedback to the laser source in tunable diode laser spectroscopy (TDLS) is known to create intensity modulation noise due to elatoning and optical feedback (i.e. multiplicative technical noise) that usually limits spectral signal-to-noise (S/N). The large technical noise often limits absorption spectroscopy to noise floors 100-fold greater than the Poisson shot noise limit due to fluctuations in the laser intensity. The high output powers generated from quantum cascade (QC) lasers, along with their high gain, makes these injection laser systems especially susceptible to technical noise. In this article we discuss a method of using optimal filtering to reduce technical noise. We have observed S/N enhancements ranging from ∼20% to a factor of ∼50. The degree to which optimal filtering enhances S/N depends on the similarity between the Fourier components of the technical noise and those of the signal, with lower S/N enhancements observed for more similar Fourier decompositions of the signal and technical noise. We also examine the linearity of optimal filtered spectra in both time and intensity. This was accomplished by creating a synthetic spectrum for the species being studied (CH4, N2O, CO2 and H2O in ambient air) utilizing line positions and linewidths with an assumed Voigt profile from a commercial database (HITRAN). Agreement better than 0.036% in wavenumber and 1.64% in intensity (up to a 260-fold intensity ratio employed) was observed. Our results suggest that rapid ex post facto digital optimal filtering can be used to enhance S/N for routine trace gas detection. Received: 1 April 2002 / Revised version: 7 May 2002 / Published online: 21 August 2002 RID="*" ID="*"Corresponding author. Fax: +1-509/376-6066, E-mail: robert.disselkamp@pnl.gov  相似文献   

15.
Using a tunable external cavity tapered diode laser (ECDL) pumped quasi-three-level Nd:YAG laser, a fivefold reduction in threshold and twofold increase in slope efficiency is demonstrated when compared to a traditional broad area diode laser pump source. A TEM00 power of 800 mW with 65% slope efficiency is obtained, the highest reported TEM00 power from any 946 nm Nd:YAG laser pumped by a single emitter diode laser pump source. A quantum efficiency of 0.85 has been estimated from experimental data using a simple quasi-three-level model. The reported value is in good agreement with published values, suggesting that the model is adequate. Improvement of the 946 nm laser due to the ECDL's narrow spectrum proves to be less significant when compared to its spatial quality, inferring a broad spectrum tapered diode laser pump source may be most practical. Experimental confirmation of such setup is given.  相似文献   

16.
Spectral investigation around 6115 cm-1 for simultaneous detection of ammonia, methane and ethylene in gas samples is presented. Experimental data on the ν234 combination band of ammonia are reported with a resolution of 1.5 GHz. A trace gas analyzer based on a resonant photoacoustic cell and an external cavity diode laser has been used for detection. A data fitting procedure has been developed in order to improve the system sensitivity and to limit the need of a reference cell. The selected spectral region allows a sensitivity of about 60 ppm for ammonia, 6 ppm for methane and 30 ppm for ethylene with 0.3 mW laser power. An application of simultaneous detection of such molecules in a mixture reproducing their typical abundances in real gas samples from biomass gasification is discussed. PACS 42.62.Fi; 42.55.Px; 82.80.Ch  相似文献   

17.
The room temperature operating GaInAsSb/AlGaAsSb based diode laser and 66 K InAsSb/InAsSbP laser diode both operating in spectral range of formaldehyde absorption 4350-4361 cm−1 and 2821-2823 cm−1 have been characterized and compared. Very precise arrangement of laser absorption together with high resolution Fourier transform technique was tested. The photoacoustic technique was employed to determine the detection limit of formaldehyde (less than 1 ppmV) diluted by nitrogen for the strongest absorption line of the ν3ν5 band in the emission region of the GaInAsSb/AlGaAsSb diode laser. The detection limit (less than 10 ppbV) of formaldehyde was achieved in the 2820 cm−1 spectral range in case of InAsSb/InAsSbP laser (fundamental bands of ν1, ν5).  相似文献   

18.
This study describes the application of confocal Raman microscopy to the detection and identification of explosives and their precursors in situ on undyed natural and synthetic fibres and coloured textile specimens. Raman spectra were obtained from explosives particles trapped between the fibres of the specimens. The explosives pentaerythritol tetranitrate (PETN), trinitrotoluene (TNT), and ammonium nitrate as well as the explosives precursors hexamethylenetetraamine (HMTA) and pentaerythritol were used in this study. Raman spectra were collected from explosives particles with maximum dimensions in the range 5–10 µm. Despite the presence of spectral bands arising from the natural and synthetic polymers and dyed textiles, the explosive substances could be identified by their characteristic Raman bands. Furthermore, Raman spectra were obtained from explosives particles trapped between highly fluorescent clothing fibres. Raman spectra of the explosive and explosive precursor substances on dyed and undyed clothing substrates were readily obtained in situ within 90 s without sample preparation and with no alteration of the evidential material. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The absorption spectra of 14NH3 and 15NH3 molecules from 930 cm-1 to 1220 cm-1 have been obtained with CW and pulsed Pb1–xSnxSe diode lasers. The laser emission frequency has been tuned by varying crystal composition, diode temperature, hydrostatic pressure, or injection current. The registration of the absorption spectra with CW PbSe laser continuously tuned by varying hydrostatic pressure has been accomplished. The possibility of gas isotope abundancies measurements by diode lasers is considered.  相似文献   

20.
近年来,恐怖袭击、刑事犯罪等爆炸事件频发,对社会的公共安全构成了严峻挑战。炸药是各种爆炸物的核心成分,因此对炸药的分析检测与识别是公共安全领域研究的热点之一。表面增强拉曼光谱可以对爆炸物分子实现指纹谱性、超痕量、实时高效的探测和识别,在安全检测和法庭科学等公共安全领域展现了极具诱惑力的应用前景。最近几年,国际上针对表面增强拉曼光谱检测爆炸物的研究十分活跃,取得了丰富的成果,文章综述了爆炸物表面增强拉曼基底,包括表面修饰改性和复合功能结构基底;有机和无机爆炸物的检测;以及爆炸物光谱识别的研究进展。分析了需要面对的问题,并总结展望了未来的发展趋势。相信随着纳米科学与技术、表面科学、仪器科学以及深度学习等新兴科技的快速发展,表面增强拉曼光谱一定能在爆炸物检测和识别方面取得更大进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号