首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhu  J.  Sykes  J. F. 《Transport in Porous Media》2000,39(3):289-314
A multiphase flow and transport numerical model is developed to study the effects of porous media heterogeneities on residual NAPL mass partitioning and transport of dissolved and/or volatilized NAPL mass in variably saturated media. The results indicate the significance of porous media heterogeneity in influencing the mass transfer processes and NAPL transport in the subsurface. Among the parameters investigated in this study, the heterogeneity of the permeability field has the most significant influence on the NAPL mass partitioning and transport. In general, the heterogeneity of the porous media properties enhances the NAPL mass plume spreading in both the water phase and the gas phase while the influence on the water phase is much more significant. Overall, the porous media property heterogeneities tend to increase the accumulation of NAPL mass in the water phase. The nonequilibrium mass transfer processes result in the expected trend of decreasing the NAPL mass dissipation rate and causing long-term groundwater contamination.  相似文献   

2.
Density-driven advection of gas phase due to vaporization of chlorinated volatile organic compounds (VOCs) has a significant effect on fate and transport of contaminants. In this study, we investigated the effects of density-driven advection, infiltration, and permeability on contaminant plume evolution and natural attenuation of VOCs in the subsurface system. To analyze these effects, multiphase flow and contaminant transport processes were simulated using a three-dimensional Galerkin-finite-element-based model. Trichloroethylene (TCE) is selected as a target contaminant. Density-driven advection of gas phase elevated the potential of groundwater pollution in the saturated zone by accelerating downward migration of vaporized contaminant in the unsaturated zone. The advection contributed to increased removal rates of non-aqueous phase liquid (NAPL) TCE source and reduced dissolved TCE plume development in the downstream area. Infiltration reduced the velocity of the density-driven advection and its influence zone, but raised TCE transfer from the unsaturated to the saturated zone. The variation in soil permeability showed greater impact on contaminant migration within water phase in the saturated zone than within gas phase in the unsaturated zone. Temporal variations of TCE mass within two-dimensional (2D) and three-dimensional (3D) domains under several modeling conditions were compared. These results are important in evaluation of natural attenuation processes, and should be considered to effectively design monitored natural attenuation as a remedial option.  相似文献   

3.
Numerical simulation of steam flush for clean-up of non-aqueous phase liquid (NAPL) contaminated groundwater sites involves solution of the multiphase, multicomponent subsurface flow equations. This paper describes techniques for discretizing problems with horizontal wells in a three-dimensiontetrahedral mesh. The effectiveness of non-linear flux limiters for reducing numerical dispersion is discussed. Primary variable selection and thermodynamic state transition rules will also be compared. Some example results for several steam flush scenarios will be presented.  相似文献   

4.
Ghanem  R.  Dham  S. 《Transport in Porous Media》1998,32(3):239-262
This study is concerned with developing a two-dimensional multiphase model that simulates the movement of NAPL in heterogeneous aquifers. Heterogeneity is dealt with in a probabilistic sense by modeling the intrinsic permeability of the porous medium as a stochastic process. The deterministic finite element method is used to spatially discretize the multiphase flow equations. The intrinsic permeability is represented in the model via its Karhunen–Loeve expansion. This is a computationally expedient representation of stochastic processes by means of a discrete set of random variables. Further, the nodal unknowns, water phase saturations and water phase pressures, are represented by their stochastic spectral expansions. This representation involves an orthogonal basis in the space of random variables. The basis consists of orthogonal polynomial chaoses of consecutive orders. The relative permeabilities of water and oil phases, and the capillary pressure are expanded in the same manner, as well. For these variables, the set of deterministic coefficients multiplying the basis in their expansions is evaluated based on constitutive relationships expressing the relative permeabilities and the capillary pressure as functions of the water phase saturations. The implementation of the various expansions into the multiphase flow equations results in the formulation of discretized stochastic differential equations that can be solved for the deterministic coefficients appearing in the expansions representing the unknowns. This method allows the computation of the probability distribution functions of the unknowns for any point in the spatial domain of the problem at any instant in time. The spectral formulation of the stochastic finite element method used herein has received wide acceptance as a comprehensive framework for problems involving random media. This paper provides the application of this formalism to the problem of two-phase flow in a random porous medium.  相似文献   

5.
In many groundwater systems, fluid density and viscosity may vary in space and time as a function of changes in concentration and temperature of the fluid. When dense groundwater plumes interact with less dense ambient groundwater, these density variations can significantly affect flow and transport processes. Under certain conditions, gravitational instabilities in the form of lobe-shaped fingers can occur. This process is significant because it can lead to more rapid and spatially extensive solute transport. This paper presents new experiments carried out in a sand filled glass flow container under both fully saturated and variably-saturated conditions and focuses upon the processes that occur at the capillary fringe and below the water table, as affected by a dense contaminant plumes migration through the unsaturated zone. Source fluids stained with Rhodamine-WT were introduced at the upper boundary of the tank at a range of low and high densities. In addition to the fluid density gradients and porous medium permeability that determine the onset conditions for instabilities in fully saturated experiments, volumetric water content appears critical in the variably-saturated laboratory runs. Plume behaviour at the water table appears dependent upon the density of the fluid that accumulates there. For neutral and low density fluids, plumes accumulate at the water table and then spread laterally above it and the water table forms a barrier to further vertical flow as pore water velocities reduce with increasing water content. For medium and high density fluids, vertical movement continues as instabilities form at the capillary fringe and fingers begin to grow at the water table boundary and move downwards into the saturated zone. In these cases, lateral spreading of the plume is small. Despite these more qualitative observations, the exact nature of the relevant stability criteria for the onset and growth of instabilities in variably-saturated porous media presently remain unclear. All experimental results suggest, however, that the unsaturated zone and position of the water table must be considered in contaminant studies in order to predict the migration pathways, rates and ultimate fate of dense contaminant plumes. It is possible that the results of experiments presented in this paper could form a useful basis for the testing of variable-density (and variably-saturated) groundwater flow and solute transport numerical codes because they offer controlled physical laboratory analogs for comparison. They also provide a strong basis for the development of more rigorous mathematical formulations that are likely to be either developed or tested using numerical flow and solute transport simulators.  相似文献   

6.
Numerical models describing multiphase flow phenomena are typically used to predict the displacement of water during the infiltration of nonaqueous phase liquids (NAPLs) into a groundwater system. In this paper, the applicability of regression and dimensional analysis to develop simple tools to bypass these time consuming numerical simulations is assessed. In particular, the infiltration of NAPL through a vertical, homogeneous soil column initially saturated with water is quantified. Two output variables defining the extent of infiltration were considered – the elevation of the NAPL front and the volume of NAPL which had entered the system. Dimensional analysis was initially performed to identify dimensionless terms associated with the underlying relations between these two output variables and the input variables (independent variables and system parameters). Artificial neural network techniques were then employed to develop regression equations for approximating the input–output relationships over a given domain. Application of these equations illustrated the interrelationships among capillary, buoyancy, and viscous forces driving the NAPL infiltration process.  相似文献   

7.
Multicomponent NAPL Solidification Thermodynamics   总被引:2,自引:0,他引:2  
  相似文献   

8.
Turbulent mixing of dual plumes emitting simultaneously from line sources in a turbulent channel flow has been studied using direct numerical simulation (DNS). Three test cases have been compared to investigate the effects of the source separation on turbulent mixing of the two instantaneous plumes. The dispersion and interference of dual plumes are investigated in both physical and spectral spaces, which include an analysis of statistical moments of the concentration field, cross-correlation between the two instantaneous plumes, pre-multiplied spectra of the velocity and concentration fields, and co-spectrum and coherency spectrum of the dual plumes. As the downstream distance from the line source increases, the plume development associated with a single source emission transitions from a turbulent convective stage to a turbulent diffusive stage. It is observed that a plume released from a ground-level source reaches the turbulent diffusive stage faster than that released from an elevated source. It is also observed that a smaller separation between the two line sources tends to facilitate a more rapid growth in the cross-correlation coefficient of two instantaneous plumes. In the near-source region, the maximum coherency spectrum is produced at lower frequencies indicating that dual-plume mixing is dominated by the external flapping effects of large-scale eddy motions. However, in the far downstream region of the sources, the coherency spectrum in the higher frequency range increases significantly, indicating that the spread of the total plume is larger than all scales of turbulent eddies, such that they all contribute to the in-plume mixing of the dual plumes.  相似文献   

9.
10.
Hot water flooding is a thermal nonaqueous phase liquid (NAPL) recovery technology originally developed in the petroleum industry that has recently been proposed for enhanced recovery of NAPLs in the contaminated subsurface. This technology, however, has received relatively little laboratory or numerical modeling investigation in the contaminant hydrology community. In this study the utility of flooding NAPL contaminated source zones at elevated water temperatures was investigated. Simulations were conducted using 16 different geostatistical representations of an actual field site. Two NAPLs were selected for this study—a light NAPL with hydraulic properties that have moderate temperature dependencies and a dense NAPL with significant viscosity temperature dependency. For these two NAPLs, flooding the source zone with water at elevated temperatures resulted in enhanced NAPL recovery. However, injection of hot water also resulted in accelerated downward movement of coal tar DNAPL due to the reduced viscosity at elevated temperatures. NAPL recovery was also dependent on the source zone architecture with greater NAPL mass recovery when the NAPL was localized in a small volume at high saturations. These results suggest that hot water flooding can significantly speed up the recovery of viscous NAPLs and, as such, is a powerful technique for the remediation of viscous NAPLs.  相似文献   

11.
On Vaporizing Water Flow in Hot Sub-Vertical Rock Fractures   总被引:1,自引:0,他引:1  
Water injection into unsaturated fractured rock at above-boiling temperatures gives rise to complex fluid flow and heat transfer processes. Examples include water injection into depleted vapor-dominated geothermal reservoirs, and emplacement of heat-generating nuclear wastes in unsaturated fractured rock. We conceptualize fractures as two-dimensional heterogeneous porous media, and use geostatistical techniques to generate synthetic permeability distributions in the fracture plane. Water flow in hot high-angle fractures is simulated numerically, taking into account the combined action of gravity, capillary, and pressure forces, and conductive heat transfer from the wall rocks which gives rise to strong vaporization. In heterogeneous fractures boiling plumes are found to have dendritic shapes, and to be subject to strong lateral flow effects. Fractures with spatially-averaged homogeneous permeabilities tend to give poor approximations for vaporization behavior and liquid migration patterns. Depending on water flow rates, rock temperature, and fracture permeability, liquid water can migrate considerable distances through fractured rock that is at above-boiling temperatures and be only partially vaporized.  相似文献   

12.
Three-dimensional spatial direct numerical simulation is used to investigate the evolution of reactive plumes established on non-circular sources. Simulations are performed for three cases: a rectangular plume with an aspect ratio of 2:1, a square plume, and the square plume in a corner configuration. Buoyancy-induced large scale vortical structures evolve spatially in the flow field. A stronger tendency of transition to turbulence is observed for the free rectangular plume than the free square case due to the aspect ratio effect. Dynamics of the corner square plume differs significantly from the corresponding free case due to the enhanced mixing by the side-wall effects. A turbulent inertial subrange has been observed for the free rectangular and corner square plumes. Mean flow properties are also calculated. The study shows significant effects of source geometry and side-wall boundary on the flow transition and entrainment of reactive plumes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.

This study develops a new numerical model adopting a generic relation between the nonaqueous phase liquid (NAPL) mass and aqueous-phase NAPL concentration to simulate the relationship between NAPL contaminant mass discharge and contaminant mass reduction in the source zone, which plays a critical role to assist with site management decisions on contaminated zone remediation. The model can accommodate any contaminant mass and concentration relations and applicable to the situations when groundwater flowrate in the NAPL source zone varies in any form temporally. Therefore, the combined effects of mass–concentration relation and groundwater flowrate variations can be examined. It is hypothesized that the NAPL mass–concentration relations reflect the spatial variability of porous media in the subsurface. The developed model is compared with results from field monitoring sites and found to exhibit high flexibility and capability in capturing the observed complex NAPL source zone dynamics. Using six contaminant mass and concentration functions of varying shapes, we show that contaminant mass and concentration relation has pronounced effects on contaminant mass discharge dynamics in addition to the groundwater flowrate temporal variations. In general, the coupled mass–concentration relation and groundwater flowrate variations demonstrate stronger capability in capturing the NAPL source zone dynamics under a wide range of field porous medium conditions reported in the literature than the models that only consider groundwater flux variations. In particular, the concave mass–concentration models can be used in less heterogeneous porous media, while the convex mass–concentration models are more appropriate in more heterogeneous site conditions.

  相似文献   

14.
Sand particle erosion is always a challenge in natural gas production. In particular, the erosion in gas–liquid–solid annular flow is more complicated. In this study, a three-phase flow numerical model that couples the volume of fluid multiphase flow model and the discrete phase model was developed for prediction of erosion in annular flow. The ability of the numerical model to simulate the gas–liquid annular flow is validated through comparison with the experimental data. On the basis of the above numerical model, the phase distribution in the pipe was analyzed. The liquid entrainment behavior was reasonably simulated through the numerical model, which guaranteed the accuracy of predicting the particle erosion. Additionally, four erosion prediction models were used for the erosion calculation, among them, the Zhang et al. erosion model predicted the realistic results. Through the analysis of the particle trajectory and the particle impact behavior on the elbow, the cushion effect of the liquid film on the particles and the erosion morphology generation at the elbow were revealed.  相似文献   

15.
This study deals with Non Aqueous Phase Liquid (NAPL) dissolution in subsurface water in order to predict the pollutant plume development and to optimize remediation processes. An experimental study of NAPL dissolution in porous media is presented. Local water saturation and effluent pollutant concentration measurements are presented for several kinds of porous media. Experimental results show clearly the influence of microscopic and/or macroscopic heterogeneities of the porous media and the distribution of the pollutant on the active dispersion of the NAPL. The NAPL dissolution occurs in several steps which highlights the existence of non-local equilibrium related to the heterogeneity of the porous media. To cite this article: A. Yra et al., C. R. Mecanique 334 (2006).  相似文献   

16.
The infiltration of a wetting droplet into the porous medium is a two-step process referred to as primary and secondary infiltration. In the primary infiltration there is a free liquid present at the porous medium surface, and when no fluid is left on the surface, the secondary infiltration is initiated. In both situations the driving force is the capillary pressure that is influenced by the local medium heterogeneities. A capillary network model based on the micro-force balance is developed with the same formulation applied to both infiltrations. The only difference between the two is that the net liquid flow into the porous medium in the secondary infiltration is equal to zero. The primary infiltration starts as a single-phase (fully saturated) flow and may proceed as a multiphase flow. The multiphase flow emerges as the interface (flow front) becomes irregular in shape. The immobile clusters of the originally present phase can be locally formed due to entrapment. Throughout the infiltration, it was found that portions of the liquid phase can be detached from the main body of the liquid phase forming some isolated liquid ganglia that increase in number and decrease in size. The termination of the secondary infiltration occurs once the ganglia become immobile due to their reduction in size. From the transient solution, the changes in the liquid saturation and capillary pressure during the droplet infiltration are determined. The solution developed in this study is used to investigate the droplet infiltration dynamics. However, the solution can be used to study the flow in fuel cell, nano-arrays, composites, and printing.  相似文献   

17.
A multiphase flow model has been established based on a moving particle semi‐implicit method. A surface tension model is introduced to the particle method to improve the numerical accuracy and stability. Several computational techniques are employed to simplify the numerical procedure and further improve the accuracy. A particle fraction multiphase flow model is developed and verified by a two‐phase Poiseuille flow. The multiphase surface tension model is discussed in detail, and an ethanol drop case is introduced to verify the surface tension model. A simple dam break is simulated to demonstrate the improvements with various modifications in particle method along with a new boundary condition. Finally, we simulate several bubble rising cases to show the capacity of this new model in simulating gas–liquid multiphase flow with large density ratio difference between phases. The comparisons among numerical results of mesh‐based model, experimental data, and the present model, indicate that the new multiphase particle method is acceptable in gas–liquid multiphase fluids simulation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Spatial direct numerical simulation (DNS) is used to study the near field dynamics of a buoyant diffusion flame established on a rectangular nozzle with an aspect ratio of 2:1. Combustion is represented by a one-step finite-rate Arrhenius chemistry. Without applying external perturbations at the inflow boundary, large vortical structures develop naturally in the flow field, which interact with the flame and temporally create localized holes within the reaction zone in which no chemical reactions take place. The interaction between density gradients and gravity plays a major role in the vorticity generation of the buoyant plume. At the downstream of the reactive plume, a more disorganized flow regime characterized by small scales has been observed, following the breakdown of the large vortical structures due to three-dimensional (3D) vortex interactions. Analysis of energy spectra shows that the spatially developing reactive plume has a tendency of transition to turbulence under the effects of combustion-induced buoyancy. The buoyancy effects are found to be very important to the formation, development, interaction, and breakdown of vortices in reactive plumes. In contrast with the relaminarization effects of chemical exothermicity via viscous damping and volumetric expansion on non-buoyant jet diffusion flames, the tendency towards transition to turbulence in reactive plumes is greatly enhanced by the buoyancy effects.  相似文献   

19.
In-situ air sparging (IAS) is used for the clean-up of soil and groundwater that are contaminated with volatile organic compounds in relatively permeable subsurface environments. In this study, we investigated the secondary groundwater and gas flow fields that develop in the vicinity of single and multiple air sparging wells. The purpose is to evaluate their effects on contaminant plume migration and thus, remediation. Governing equations describing multiphase flow and contaminant transport in a three-dimensional domain were formulated and solved using the Galerkin finite element technique. Trichloroethylene was selected as a target contaminant. The increase in air injection contributed to an increase in the size of the IAS cone of influence and the gas saturation levels within the cone. This reduced the groundwater velocity within the cone and increased the zone of detour of groundwater around the air sparging wells. This outcome was quantified and compared under several IAS operations. Different soil permeability characteristics also affected the groundwater and gas flow patterns, and this impacted the remedial performance of the IAS system. Under high ambient groundwater velocity, an air sparging system that uses a single injection well caused the detour of contaminant plumes around injection wells, regardless of air injection rates, and failed to meet the remedial goal specified here. This system was successful for relatively low ambient groundwater velocity environments used here. An IAS system with multiple injection wells was effective in capturing and remediating the detoured contaminant plume, and showed superior performance when compared to a single injection well IAS system. Using IAS simulation, we also analyzed the impact of injection rates on site remediation using single or multiple wells. Design criteria that are based on the results of this study would be useful in enhancing the performance of the IAS systems.  相似文献   

20.
Pollution by dense non-aqueous phase liquids (DNAPLs) represents a major threat to groundwater resources. In a real case of site contamination, the efficiency of remediation techniques is often limited by a lack of knowledge of both the extent of the pollution and the behavior of the different phases of the pollutant in the subsurface. An experiment simulating pollution of an aquifer by a chlorinated solvent (Trichloroethylene: TCE) was conducted on a large controlled experimental site called SCERES. The experiment consisted of an injection of 8.9 liters of TCE under controlled conditions at 35cm below the soil surface with an appropriate set up. The goal was to study the behavior of the three phases of the pollutant (trapped TCE phase forming the impregnation body, vapors in the vadose zone, and dissolved traces in the aquifer) in order to better comprehend the mechanisms which govern the propagation and the transfer of this type of pollution underground. The SCERES experimental data indicate that mass transfer from the saturated zone to the vadose zone is important, affecting the repartition of the vapor plume and causing a significant decrease of dissolved TCE concentrations in the groundwater. Furthermore, vertical leaching of TCE vapors due to rainfall strongly influences the degree of groundwater pollution and its lateral extent. The transient mass balance of the experiment is very satisfactory and shows that the main part of the spilled quantity is lost to the atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号