首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A full dimensional state-to-state quantum dynamics study is carried out for the prototypical complex-formation OH + CO → H + CO(2) reaction in the ground rovibrational initial state on the Lakin-Troya-Schatz-Harding potential energy surface by using the reactant-product decoupling method. With three heavy atoms and deep wells on the reaction path, the reaction represents a huge challenge for accurate quantum dynamics study. This state-to-state calculation is the first such a study on a four-atom reaction other than the H(2) + OH ? H(2)O + H and its isotope analogies. The product CO(2) vibrational and rotational state distributions, and product energy partitioning information are presented for ground initial rovibrational state with the total angular momentum J = 0.  相似文献   

2.
A full dimensional, nine-degree-of-freedom (9DOF), time-dependent quantum dynamics wave packet approach is presented for the study of the H2+C2H-->H+C2H2 reaction system. This is the first full dimensional quantum dynamics study for a diatom-triatom reaction system. The effects of the initial vibrational and rotational excitations of the reactants on the reactivity of this reaction are investigated. This study shows that vibrational excitations of H2 enhance the reactivity; whereas, the vibrational excitations of C2H only have a small effect on the reaction probability. In addition, the bending excitations of C2H, compared to the ground state reaction probability, hinder the reactivity. Comparison of the ground state reaction probabilities of the 9DOF and 8DOF shows the reaction probability from the full dimensional calculation is larger, with more prominent resonance features.  相似文献   

3.
A practical quantum-dynamical method is described for predicting accurate rate constants for general chemical reactions. The ab initio potential energy surfaces for these reactions can be built from a minimal number of grid points (average of 50 points) and expressed in terms of analytical functionals. All the degrees of freedom except the breaking and forming bonds are optimised using the MP2 method with a cc-pVTZ basis set. Single point energies are calculated on the optimised geometries at the CCSD(T) level of theory with the same basis set. The dynamics of these reactions occur on effective reduced dimensionality hyper-surfaces accounting for the zero-point energy of the optimised degrees of freedom. Bonds being broken and formed are treated with explicit hyperspherical time independent quantum dynamics. Application of the method to the H + CH(4)--> H(2)+ CH(3), H + C(2)H(6)--> H(2)+ C(2)H(5), H + C(3)H(8)--> H(2)+n-C(3)H(7)/H(2)+i-C(3)H(7) and H + CH(3)OH --> H(2)+ CH(3)O/H(2)+ CH(2)OH reactions illustrate the potential of the approach in predicting rate constants, kinetic isotope effects and branching ratios. All studied reactions exhibit large quantum tunneling in the rate constants at lower temperatures. These quantum calculations compare well with the experimental results.  相似文献   

4.
5.
In the last decade or so, the H-atom Rydberg tagging time-of-flight (HRTOF) technique has made a significant impact in the study of state-to-state reaction dynamics, and especially in the study of transition state dynamics of elementary chemical reactions and quantum state resolved dynamics of molecular photodissociation of important molecules. In this perspective, we will discuss mainly the state-to-state dynamics of three important elementary reactions: H + H(2), O((1)D) + H(2) and F + H(2) that have been studied in our laboratory in recent years using the HRTOF method. In addition, we will also mention briefly the experimental results of other reactive systems. In the end, we will also present a brief research outlook in the study of molecular reaction dynamics using this powerful experimental method.  相似文献   

6.
Yam C  Zhang Q  Wang F  Chen G 《Chemical Society reviews》2012,41(10):3821-3838
The poor scaling of many existing quantum mechanical methods with respect to the system size hinders their applications to large systems. In this tutorial review, we focus on latest research on linear-scaling or O(N) quantum mechanical methods for excited states. Based on the locality of quantum mechanical systems, O(N) quantum mechanical methods for excited states are comprised of two categories, the time-domain and frequency-domain methods. The former solves the dynamics of the electronic systems in real time while the latter involves direct evaluation of electronic response in the frequency-domain. The localized density matrix (LDM) method is the first and most mature linear-scaling quantum mechanical method for excited states. It has been implemented in time- and frequency-domains. The O(N) time-domain methods also include the approach that solves the time-dependent Kohn-Sham (TDKS) equation using the non-orthogonal localized molecular orbitals (NOLMOs). Besides the frequency-domain LDM method, other O(N) frequency-domain methods have been proposed and implemented at the first-principles level. Except one-dimensional or quasi-one-dimensional systems, the O(N) frequency-domain methods are often not applicable to resonant responses because of the convergence problem. For linear response, the most efficient O(N) first-principles method is found to be the LDM method with Chebyshev expansion for time integration. For off-resonant response (including nonlinear properties) at a specific frequency, the frequency-domain methods with iterative solvers are quite efficient and thus practical. For nonlinear response, both on-resonance and off-resonance, the time-domain methods can be used, however, as the time-domain first-principles methods are quite expensive, time-domain O(N) semi-empirical methods are often the practical choice. Compared to the O(N) frequency-domain methods, the O(N) time-domain methods for excited states are much more mature and numerically stable, and have been applied widely to investigate the dynamics of complex molecular systems.  相似文献   

7.
8.
The Ne + H2+-->NeH+ + H proton transfer reaction was studied using the time dependent real wave packet quantum dynamics method at the helicity decoupling level, considering the H2+ molecular ion in the (v=0-4, j=0) vibrorotational states and a wide collision energy interval. The calculated reaction probabilities and reaction cross sections were in a rather good agreement with reanalyzed previous exact quantum dynamics results, where a much smaller collision energy interval was considered. Also, a quite good agreement with experimental data was found. These results suggested the adequacy of the approach used here to describe this and related systems.  相似文献   

9.
戴东旭  杨学明 《中国科学B辑》2009,39(10):1089-1101
化学反应过渡态决定了包括反应速率和微观反应动力学在内的化学反应的基本特性,而无论是从理论还是实验上研究和观测化学反应过渡态都是极具挑战性的课题.近年来,我国科学家们利用交叉分子束-里德堡氢原子飞行时间谱仪,结合高精度的量子动力学计算,对H+H2和F+H2这两个教科书式的典型反应体系进行了全量子态分辨的反应动力学研究,从中得出了关于这两个反应体系的过渡态的结构和动力学性质的结论性的研究成果.  相似文献   

10.
Phase space theory (PST) is applied to the calculation of state-resolved integral and differential cross sections for the complex-forming atom-diatom insertion reactions A + H(2) --> AH(2) --> AH + H with A = C((1)D), S((1)D), O((1)D), and N((2)D). In the asymptotic channels, vibration motion is quantized while rotation and translation motions are treated classically. The approach is compared to exact quantum scattering calculations and quantum statistical models. Given the simplicity of PST, the agreement with the previous much more refined treatments is very satisfying. Although PST is a well-established theory, this work is, to our knowledge, the first such systematic comparison of its predictions with accurate quantum scattering and quantum statistical calculations.  相似文献   

11.
The moving boundary truncated grid (TG) method is used to study wave packet dynamics of multidimensional quantum systems. As time evolves, appropriate Eulerian grid points required for propagating a wave packet are activated and deactivated with no advance information about the dynamics. This method is applied to the Henon-Heiles potential and wave packet barrier scattering in two, three, and four dimensions. Computational results demonstrate that the TG method not only leads to a great reduction in the number of grid points needed to perform accurate calculations but also is computationally more efficient than the full grid calculations.  相似文献   

12.
采用量子化学计算方法研究了H2O2 氧化N2 生成N2O 和H2O 的机理.结果发现, H2O2 氧化N2 先通过1 个四元环过渡态形成中间体H2N2O2 分子,H2N2O2 再通过一个五元环过渡态形成N2O和H2O.根据计算得到的每步反应的活化能,得知H2O2 氧化N2 生成中间体H2N2O2 分子是整个反应的控制步骤.  相似文献   

13.
A grid empowered molecular simulator (GEMS) embodying in a single workflow the ab initio treatment of elementary chemical processes has been extended to four atom reactions. GEMS has been used to carry out a massive quasiclassical investigation for the $\hbox{OH} +\hbox{CO} \rightarrow\hbox{H} +\hbox{CO}_2$ reaction on the most recently proposed potential energy surface. The type of potential energy surface used and the possibility of running the simulations on the grid have allowed us to keep the error of the order of a few percent at all values of the collision energy and to estimate accurately the dependence of the reaction cross section on the collision energy. The accuracy of the calculations has allowed to unequivocally single out the fact that the calculated center-of-mass angular distribution is clearly isotropic and radically differs from the asymmetric forward?Cbackward structure obtained from the experiment. However, when the laboratory frame analogues are compared, the difference almost vanishes.  相似文献   

14.
空间质子与电子综合辐照作用下甲基硅橡胶破坏模型   总被引:2,自引:0,他引:2  
张丽新  徐洲  何世禹 《化学学报》2004,62(7):725-728
利用空间辐照环境模拟设备对甲基硅橡胶进行了质子、电子综合辐照试验.质子、电子的辐照能量均为150 keV,辐照剂量均为1016 cm-2.质谱测试发现,综合辐照过程中有CH3Si(O)CH3气体生成.量子化学计算表明,H+直接进攻硅橡胶高分子链中的氧而导致高分子链断裂的过程要放热655.34 kJ/mol,是唯一的放热反应通道.这一过程不会形成稳定的过渡态和中间体,而是直接形成断键产物.计算分析结果与综合辐照形成的气体产物CH3Si(O)CH3相吻合.  相似文献   

15.
CH_3自由基和O(~3P)反应机理的量子化学研究   总被引:4,自引:0,他引:4  
李来才  邓萍  李德华  田安民 《化学学报》2002,60(7):1186-1191
用分子轨道从头计算MP2(full)方法和密度泛函理论(DFT)中的B3LYP方法 研究了CH_3自由基和三线态O原子反应的微观机理,优化得到了反应途径上的反应 物、过渡态、中间体和产物的几何构型,通过振动分析对过渡态和中间体构型进行 了确认,在G3不平上计算了能量,同时用经典过渡态理论对该反应的绝对速率常数 进行了理论计算。研究结果表明:CH_3自由基与O(~3P)反应有四条不同的放热反 应通道,主反应通道为IM1→TS1→CH_2O + H,同时反应可彻底裂解生成CO, H_2 及H。  相似文献   

16.
用量子化学计算方法对CH3CH=·CH与O2气的反应机理进行了理论研究, 在B3LYP/6-311G(d,p) 水平下优化稳定分子结构和寻找过渡态, 并在此构型的基础上, 采用CCSD(T)/6-311G(d,p)方法得到各驻点的高级单点能量. 找到主要路径R(CH3CH=·CH+O2)→m1(trans-CH3CH=CHOO)→m2(形成COO三元环)→m3(C—C键断裂,同时生成CH3CH—O—CHO)→P2(C—O键断裂生成CH3CHO+CHO); 并与C2H3等共轭体系进行了对比.  相似文献   

17.
18.
The de Broglie-Bohm formulation of the Schrodinger equation implies conservation of the wave function probability density associated with each quantum trajectory in closed systems. This conservation property greatly simplifies numerical implementations of the quantum trajectory dynamics and increases its accuracy. The reconstruction of a wave function, however, becomes expensive or inaccurate as it requires fitting or interpolation procedures. In this paper we present a method of computing wave packet correlation functions and wave function projections, which typically contain all the desired information about dynamics, without the full knowledge of the wave function by making quadratic expansions of the wave function phase and amplitude near each trajectory similar to expansions used in semiclassical methods. Computation of the quantities of interest in this procedure is linear with respect to the number of trajectories. The introduced approximations are consistent with approximate quantum potential dynamics method. The projection technique is applied to model chemical systems and to the H+H(2) exchange reaction in three dimensions.  相似文献   

19.
The energetics, dynamics, and infrared spectroscopy of the shared proton in different chemical environments is investigated using molecular dynamics simulations. A three-dimensional potential energy surface (PES) suitable for describing proton transfer between an acceptor and a donor oxygen atom is combined with an all-atom force field to carry out reactive molecular dynamics simulations. The construction of the fully dimensional PES is inspired from the established mixed quantum mechanics/molecular mechanics treatment of larger systems. The "morphing potential" method is used to transform the generic PES for proton transfer along an O...H+...O motif into a three-dimensional PES for proton transfer in protonated diglyme. Using molecular dynamics simulations at finite temperature, the gas phase infrared spectra are calculated for both species from the Fourier transform of the dipole moment autocorrelation function. For protonated diglyme the modes involving the H+ motion are strongly mixed with other degrees of freedom. At low temperature, the O...H+...O asymmetric stretching vibration is found at 870 cm-1, whereas for H5O2+ this band is at 724 cm-1. As expected, the vibrational bands of protonated diglyme show no temperature dependence whereas for H5O2+ at T = 100 K the proton transfer mode is found at 830 cm-1, in good agreement with 861 cm-1 from very recent molecular dynamics simulations.  相似文献   

20.
Relaxation processes of the energy-rich protonated water dimer H+(H2O)2 were investigated by the ab initio molecular dynamics (AIMD) method. At first, the energy-rich H+(H2O)2 was reproduced by simulating a collision reaction between the protonated water monomer H3O+ and H2O. Next it was collided with N2 in order to observe the effects of intramolecular vibration redistribution and intermolecular energy transfer. Forty-eight AIMD simulations of the collision of H+(H2O)2 with N2 were performed by changing the initial orientation and the time interval between two collisions. It was revealed that the amount of energy transferred from H+(H2O)2 to N2 decreased the longer the time interval. The relationship between the intermolecular energy transfer and the vibrational states was examined with the use of an energy-transfer spectrogram (ETS), which is an analysis technique combining energy density analysis and short-time Fourier transform. The ETS demonstrates a characteristic vibrational mode for the energy transfer, which corresponds to the stretching of the hydrogen bond between H+(H2O)2 and N2 in an active complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号