首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Upon the addition of a short EO chain nonionic surfactant, poly(oxyethylene) dodecyl ether (C12EOn), to dilute micellar solution of sodium dodecyl sulfate (SDS) above a particular concentration, a sharp increase in viscosity occurs and a highly viscoelastic micellar solution is formed. The oscillatory-shear rheological behavior of the viscoselastic solutions can be described by the Maxwell model at low shear frequency and combined Maxwell-Rouse model at high shear frequency. This property is typical of wormlike micelles entangled to form a transient network. It is found that when C12EO4 in the mixed system is replaced by C12EO3 the micellar growth occurs more effectively. However, with the further decrease in EO chain length, phase separation occurs before a viscoelastic solution is formed. As a result, the maximum zero-shear viscosity is observed at an appropriate mixing fraction of surfactant in the SDS-C12EO3 system. We also investigated the micellar growth in the mixed surfactant systems by means of small-angle X-ray scattering (SAXS). It was found from the SAXS data that the one-dimensional growth of micelles was obtained in all the SDS-C12EOn (n=0-4) aqueous solutions. In a short EO chain C12EOn system, the micelles grow faster at a low mixing fraction of nonionic surfactant.  相似文献   

2.
Aqueous mixed micellar solutions of perfluoropolyether carboxylic salts with ammonium counterions have been studied by small-angle neutron scattering. Two surfactants differing in the tail length were mixed in proportions n2/n3 = 60/40 w/w, where n2 and n3 are the surfactants with two and three perfluoroisopropoxy units in the tail, respectively. The tails are chlorine-terminated. The mixed micellar solutions, in the concentration range 0.1-0.2 M and thermal interval 20-40 degrees C, show structural characteristics of the interfacial shell that are very similar to ammonium n2 micellar solutions previously investigated; thus, the physics of the interfacial region is dominated by the polar head and counterion. The shape and dimensions of the micelles are influenced by the presence of the n3 surfactant, whose chain length in the micelle is 2 A longer than that of the n2 surfactant. The n3 surfactant favors the ellipsoidal shape in the concentration range 0.1-0.2 M with a 1/2 ionization degree of n2 micelles. The very low surface charge of the mixed micelles is attributed to the increase in hydrophobic interactions between the surfactant tails, due to the longer n3 surfactant molecules in micelles. The closer packing of the tails decreases the micellar curvature and the repulsions between the polar heads, by surface charge neutralization of counterions migrating from the Gouy-Chapman diffuse layer, leading to micellar growth in ellipsoids with greater axial ratios.  相似文献   

3.
The interaction between an anionic dye C.I. Reactive Orange 16 (RO16) and a cationic surfactant dodecylpyridinium chloride (DPC) in mixtures of DPC and nonionic surfactants poly(oxyethylene)ethers (C(m)POE(n); m = 12, 16 and 18, n = 4, 10 and 23) are investigated spectrophotometrically in a certain micellar concentration range. The spectrophotometric measurements of dye-surfactant systems are carried out as function of mole fraction of surfactant at four different temperatures. For this reason, a typical system was occurred at 1.0 x 10(-2) mol l(-1) for surfactants and at 1.0 x 10(-4) mol l(-1) for dye concentrations. The formation of DPC-RO16 complex in the C(m)POE(n) solutions of different mole fractions in its micellar concentration range have been determined and compared to those obtained in the binary mixtures. From the spectrophotometric measurements has been observed that the addition of nonionic surfactant in to the mixture of DPC-RO16, causes a significant increase of the value of absorbance. This increase explains that the stability of DPC-RO16 complex is reduced in the presence of nonionic surfactant micelles. It can be seen from results; in mixed surfactant solutions, there are DPC-C(m)POE(n) and RO16-C(m)POE(n) interactions in addition to DPC-RO16 interaction. Since the solubilizaton of the DPC-RO16 complex has been appeared in the C(m)POE(n) solution, our results support the conclusion that adding C(m)POE(n) influences the hydrophobic-hydrophilic balance of the studied complex. Furthermore effect of the alkyl chain length and the number of poly(oxyethylene) in nonionic surfactant on values of absorbance have been investigated.  相似文献   

4.
The molecular dynamics, organization, and phase state of aqueous solutions of new long-chain cationic surfactants with saturated hydrocarbon radicals (from C16 to C22) containing one or two hydroxyl groups in their polar heads are studied by the spin-probe EPR spectroscopy. In the region of micellar solutions, local mobility of surfactant molecules slightly changes with an increase in the length of hydrocarbon radical, whereas the order parameter of micelles increases notably. The addition of two hydroxyl groups to the polar part of long-chain (C 22) surfactant molecule considerably decreases local mobility and increases the ordering of micellar system compared to the micelles of analogous surfactant with one hydroxyl group. Phase transition from micellar to a solid state is observed in this system with a decrease in temperature. The addition of KCl to aqueous surfactant solution lowers the local mobility, increases the order parameter of micelles, and can cause changes in the phase state of a system. In the presence of salt, the correlation time of probe rotation and its order parameter depend on surfactant concentration. Apparently, this is explained by changes in the shape of micelles upon variations in surfactant concentration.  相似文献   

5.
We report measurements of self aggregation in aqueous solution of an ionic liquid (IL), didecyl-dimethylammonium nitrate ([DDA][NO(3)]) and a surfactant hexadecyl-trimethylammonium bromide (CTAB) and of mixtures of these two salts. The electrical conductivity and dynamic light scattering (DLS) measurements were used for the characterization of the aggregation process. The conductivity measurements were performed at three temperatures. The critical micelle concentration (CMC) was determined at different temperatures and at different ratio of two salts. The effect of IL on the micellization of CTAB has been discussed. Our results suggest that organized structures formed by CTAB and [DDA][NO(3)] self assembly in domains of several hundred nanometers size. The micellar solubility of the salicylic acid in mixed salt aqueous solutions was determined to probe the physical properties of these assemblies. We have observed, that the micellar solubility enhancement was only slightly influenced by the nature of micelles present in aqueous solution. This proves that salicylic acid solubilization is enthalpy driven.  相似文献   

6.
The reaction between methyl 4-nitrobenzenesulfonate and bromide ions has been studied in mixed single-chain-gemini micellar solutions of n-dodecyltrimethylammonium bromide, DTAB, and dodecyl tricosaoxyethylene glycol ether, Brij(35), with alkanediyl-alpha-omega-bis(dodecyldimethylammonium) bromide, 12-s-12,2Br(-) (s=3,4,5). Kinetic micellar effects show that an increase in the solution mole fraction of the single-chain surfactant, X(single-chain), results in a diminution of the mixed micelles tendency to form spherocylindrical aggregates upon increasing surfactant concentration. The dependence of the surfactant concentration at which the sphere-to-rod transition occurs, C(*), on X(single-chain) showed through kinetic data was in agreement with results obtained by means of fluorescence measurements.  相似文献   

7.
8.
Aggregational behaviour of micelles sodium dodecyl sulphate (SDS and Triton X-100, TX-100 both in pure and mixed form) and micelle like aggregates such as polymer-surfactant system [polymer poly(vinyl pyrrolidone), PVP]-SDS have been studied by using fluorescence characteristics of a newly synthesized probe. The critical micelle concentration (CMC) values determined at various surfactant compositions are lower than the ideal values indicating a synergistic effect. The value of the interaction parameter for the surfactant mixture has been determined which agrees well with the value calculated according to molecular thermodynamic theory. The total aggregation number of surfactant in mixed micelle shows a drastic variation in the SDS mole fraction range 0 < or = alpha1 < or = 0.3 and beyond the range it remains practically constant. Molar-based partition coefficients for the dye between the micellar and aqueous phase have been determined and a non-linear variation is obtained for the mixed micellar system. Variations of micro-polarity in the mixed micellar region have been investigated as a function of surfactant composition and results have been explained in terms of a suitable realistic model.  相似文献   

9.
The tetrabutylammonium (TBA) salts of fatty acids, from dodecanoic acid (C12) to octacosanoic acid (C28), have been prepared by direct neutralization of the fatty acid by TBA hydroxide. Unexpectedly, all of these surfactants have been found to be soluble in water under the form of micelles at a sufficiently high temperature. For instance, the solubility of TBA octacosanoate in water is of about 7 wt % at 46 degrees C. Starting from TBA docosanoate, the aqueous solutions of the surfactants gelled below a certain temperature. The gelling temperature increased linearly with the fatty acid carbon number. Upon increasing temperature, the TBA octocosanoate showed a relatively complex phase behavior that has been investigated. The micellar solutions of these surfactants did not cloud at high temperatures, up to 98 degrees C, contrary to TBA alkylsulfates. The aggregation numbers of micelles of the various TBA alkylcarboxylates have been measured and found to be smaller than those for the maximum spherical micelle that a surfactant with the same alkyl chain length can form. The micelle micropolarity and microviscosity (as sensed by fluorescent probes) decreased and increased, respectively, with the fatty acid carbon number.  相似文献   

10.
11.
The molecular dynamics and the structure of molecular complexes formed by micelles of dodecyl-substituted poly(ethylene glycol) with poly(methacrylic acid) and poly(acrylic acid) in aqueous solutions were studied by viscosimetry, pH measurement, and electron spin resonance spin-probe techniques. At low surfactant concentrations, the conformation of the complex is a compact globule. The local mobility of surfactant molecules in such a complex is much slower than that in the free micelle. At high surfactant concentration, the nonionic micelles and polyacids form hydrophilic associates. The associates have the conformation of extended coils. In an associate, a major part of the micellar poly(ethylene glycol) groups is free. The local mobility of the micellar phase depends on the number of micelles involved in an associate. The mobility of surfactant molecules is slower in the complexes of poly(methacrylic acid) than in the complexes of poly(acrylic acid).  相似文献   

12.
The visible spectra of Safranine T (ST) in micellar solution of Brij 58, Tween 20 and Tween 40 and mixed micellar solution of Brij 58/Tween 20 and Brij 58/Tween 40 indicate formation of 1:1 charge transfer (CT) complex between acceptor ST and donor nonionic micelles and mixed micelles. The experimental CT transition energies are well correlated (through Mulliken's equation) with the vertical ionization potential of the donors. The solvent parameters, i.e. the intramolecular charge transfer energy ET(30) have been determined from the Stokes spectral shift. Variations of ionization potential and micropolarity in the mixed micellar region have been investigated as a function of surfactant composition and the obtained results in mixed micellar medium has been compared to the normal micelles. The critical micelle concentration (CMC) values determined at various surfactant compositions are lower than the ideal values indicating a synergistic interaction. The interaction parameter (beta) and micellar stability has been calculated using regular solution theory.  相似文献   

13.
The reaction methyl naphthalene-2-sulfonate + Br(-) was investigated in several alkanediyl-α-ω-bis(dodecyldimethylammonium) bromide, 12-s-12,2Br(-) (with s = 2, 3, 4, 5, 6, 8, 10, 12), micellar solutions in the absence and in the presence of various additives. The additives were 1,2-propylene glycol, which remains in the bulk phase, N-decyl N-methylglucamide, MEGA10, which forms mixed micelles with the dimeric surfactants, and 1-butanol, which distributes between the aqueous and micellar phases. Information about the micellar reaction media was obtained by using conductivity and fluorescence measurements. In all cases, with the exception of water-1,2-prop 12-5-12,2Br(-) micellar solutions, with 30% weight percentage of the organic solvent, a sphere-to-rod transition takes place upon increasing surfactant concentration. In order to quantitatively explain the experimental data within the whole surfactant concentration range, a kinetic equation based on the pseudophase kinetic model was considered, together with the decrease in the micellar ionization degree accompanying micellar growth. However, theoretical predictions did not agree with the experimental kinetic data for surfactant concentrations above the morphological transition. An empirical kinetic equation was proposed in order to explain the data. It contains a parameter b which is assumed to account for the medium micellar kinetic effects caused by the morphological transition. The use of this empirical equation permits the quantitative rationalization of the kinetic micellar effects in the whole surfactant concentration range.  相似文献   

14.
We used fluorescence quenching, vibronic band ratios and excimer fluorescence techniques to quantify the statistics of pyrene solubilization in nonionic octaethylene glycol monododecyl ether (C12E8) micelles. Using a two-phase model (aqueous and micellar pseudophases) to interpret fluorescence results, we found that all three of these experimental methods provide consistent information about pyrene partitioning between aqueous and micellar pseudophases. From dynamic quenching experiments we determined the pyrene partition coefficient and the average number of pyrene molecules solubilized per micelle over a range of surfactant concentrations. The pyrene partition coefficient increases with increasing surfactant concentration. We confirmed the partitioning results by excimer fluorescence measurements. Quenching results indicate that pyrene is accessible to Cu2+ quenchers even in the limit of high surfactant concentration where solubilized pyrene is in the infinite dilution limit in the micellar pseudophase. This suggests that solubilized pyrene resides in the micellar palisade layer. We determined the maximum number of pyrene solubilizates allowed per micelle (micellar solubilization capacity) by applying a three-phase model to fluorescence experiments conducted in the presence of solid phase pyrene. The estimated maximum capacity is 6 pyrene molecules per micelle. The three phase partitioning model successfully predicted the excimer fluorescence in the presence of solid pyrene.  相似文献   

15.
We present the phase diagram and the microstructure of the binary surfactant mixture of AOT and C(12)E(4) in D(2)O as characterized by surface tension and small angle neutron scattering. The micellar region is considerably extended in composition and concentration compared to that observed for the pure surfactant systems, and two types of aggregates are formed. Spherical micelles are present for AOT-rich composition, whereas cylindrical micelles with a mean length between 80 and 300 ? are present in the nonionic-rich region. The size of the micelles depends on both concentration and molar ratio of the surfactant mixtures. At higher concentration, a swollen lamellar phase is formed, where electrostatic repulsions dominate over the Helfrich interaction in the mixed bilayers. At intermediate concentrations, a mixed micellar/lamellar phase exists.  相似文献   

16.
Pseudo-first-order rate constants (k(obs)) for alkaline hydrolysis of N-(2'-methoxyphenyl)phthalimide (1) decrease nonlinearly with increasing total concentration of nonionic surfactant C(m)E(n) (i.e. [C(m)E(n)](T) where m and n represent the respective number of methyl/methylene units in the tail and polyoxyethylene units in the headgroup of a surfactant molecule and m/n=16/20, 12/23 and 18/20) at constant 2% v/v CH(3)CN and 1.0 mM NaOH. The k(obs)vs. [C(m)E(n)](T) data follow the pseudophase micellar (PM) model at ≤ 50 mM C(16)E(20), ≤ 1.4 mM C(12)E(23) and ≤ 2.0 mM C(18)E(20) where rate of hydrolysis of 1 in micellar pseudophase could not be detected. The values of k(obs) fail to follow the PM model at > ~50 mM C(16)E(20), > ~1.4 mM C(12)E(23) and > ~2.0 mM C(18)E(20) which has been attributed to a micellar structural transition from spherical to rodlike which in turn increases C(m)E(n) micellar binding constant (K(S)) of 1 with increasing values of [C(m)E(n)](T). Rheological measurements show the presence of spherical micelles at ≤ 50 mM C(16)E(20), ≤ 1.4 mM C(12)E(23) and ≤ 3.0 mM C(18)E(20). The presence of rodlike micelles is evident from rheological measurements at > ~50 mM C(16)E(20), > ~1.4 mM C(12)E(23) and > ~3.0 mM C(18)E(20).  相似文献   

17.
The phase behavior of a mixture of poly(isoprene)-poly(oxyethylene) diblock copolymer (PI-PEO or C250EO70) and poly(oxyethylene) surfactant (C12EO3, C12EO5, C12EO6, C12EO7, and C12EO9) in water was investigated by phase study, small-angle X-ray scattering, and dynamic light scattering (DLS). The copolymer is not soluble in surfactant micellar cubic (I1), hexagonal (H1), and lamellar (Lalpha) liquid crystals, whereas an isotropic copolymer fluid phase coexists with these liquid crystals. Although the PI-PEO is relatively lipophilic, it increases the cloud temperatures of C12EO3-9 aqueous solutions at a relatively high PI-PEO content in the mixture. Most probably, in the copolymer-rich region, PI-PEO and C12EOn form a spherical composite micelle in which surfactant molecules are located at the interface and the PI chains form an oil pool inside. In the C12EO5/ and C12EO6/PI-PEO systems, one kind of micelles is produced in the wide range of mixing fraction, although macroscopic phase separation was observed within a few days after the sample preparation. On the other hand, small surfactant micelles coexist with copolymer giant micelles in C12EO7/ and C12EO9/PI-PEO aqueous solutions in the surfactant-rich region. The micellar shape and size are calculated using simple geometrical relations and compared with DLS data. Consequently, a large PI-PEO molecule is not soluble in surfactant bilayers (Lalpha phase), infinitely long rod micelles (H1 phase), and spherical micelles (I1 phase or hydrophilic spherical micelles) as a result of the packing constraint of the large PI chain. However, the copolymer is soluble in surfactant rod micelles (C12EO5 and C12EO6) because a rod-sphere transition of the surfactant micelles takes place and the long PI chains are incorporated inside the large spherical micelles.  相似文献   

18.
The aggregation behavior and the interaction of four mixed systems for a cationic fluorocarbon surfactant, diethanolheptadecafluoro-2-undecanolmethylammonium chloride (DEFUMACl), mixing with cationic hydrocarbon surfactants, alkyltrimethylammonium chloride, CnTACl (n=12, 14, 16, and 18; where n=12 is DTACl, n=14 is TTACl, n=16 is CTACl, and n=18 is OTACl), were studied by 1H and 19F NMR in more detail. The results of 19F NMR measurements strongly indicate that in the three mixed systems of DEFUMACl/DTACl, DEFUMACl/TTACl, and DEFUMACl/CTACl at different molar fractions of fluorocarbon surfactant (alphaF=(cDEFUMACl/cDEFUMACl+cCnTACl)), with an increase of the total concentration of fluorocarbon and hydrocarbon surfactants (cT=cF+cH), the mixed micelles at the first break point and the individual DEFUMACl micelles at the second break point form. However, three different types of micelles were determined in DEFUMACl/OTACl mixtures by 19F NMR measurements, OTACl-rich and DEFUMACl-rich mixed micelles and individual DEFUMACl micelles, respectively. The chemical shifts of proton Deltadelta (1H) for -CH3 in the mixed systems of DEFUMACl/CnTACl (n=12, 14, 16, and 18) have different variation trends from the 19F NMR measurements. For the two systems of DEFUACl/DTACl and DEFUMACl/TTACl, the mixed micelles form at the first break point. At the second break point, for lower alpha F values the DTACl-rich and TTACl-rich mixed micelles form with a strong downfield shift and for higher alpha F values DEFUMACl-rich mixed micelles form with a strong upfield. For the other two systems of DEFUMACl/CTACl and DEFUMAC/OTACl, the chemical shifts of proton Deltadelta (1H) of -CH3 increase with an increase of the total concentration of DEFUMACl/CTACl or OTACl, and mixed CH- and CF-surfactant micelles form. At higher total concentration, the greater effect of fluorinated chains of DEFUMACl on CH-chains was obvious, resulting in the strong upfield chemical shifts. In cationic fluorocarbon and hydrocarbon surfactant mixtures, the different kinds of micelles observed by 19F and 1H NMR measurements could be caused by the increase in alkyl chain length of hydrocarbon surfactants with different critical micelle concentrations. Combining two theoretical models for mixing, for the four different chain-length hydrocarbon surfactants studied, one can conclude that the two components of mixtures interact with each other and form mixed micelles in two completely different ways according to their molecular properties and cmc values in a certain range of total concentrations. One is close to an ideal mixing case with the formation of one type of mixed micelles, such as the DEFUMACl/DTACl and DEFUMACl/TTACl systems. The other is a demixing case with the formation of two types of micelles, i.e., fluorocarbon-rich and hydrocarbon-rich mixed micelles, such as DEFUMACl/CTACl and DEFUMACl/OTACl systems. However, as the total concentrations of the mixed systems are high enough, the four systems tend to demix and to form individual micelles of corresponding components due to the initial respective interaction between fluorocarbon and hydrocarbon chains. That is to say, at high total concentration, the individual DEFUMACl micelles in all four systems could form. These results may be primarily directed toward acquiring an understanding of the mechanism of CF-CH mixtures in aqueous solution and secondarily directed toward providing more detailed information on nonideal mixing.  相似文献   

19.
The phase behavior and microstructure of aqueous mixtures of n-octyl-beta-D-glucoside (C8betaG1) and triethylene glycol mono-n-octyl ether (C8E3) is presented. C8betaG1 forms a one-phase micellar solution in water at surfactant concentrations up to 60 wt %, whereas mixtures with C8E3 show a liquid-liquid phase transition at low surfactant concentration. The position of this phase boundary for mixtures can be rationally shifted in the temperature-composition window by altering the ratio of the two surfactants. Small-angle neutron scattering is used to determine the size and shape of the mixed micelles and to characterize the nature of the fluctuations near the cloud point of the micellar solutions. The C8betaG1/C8E3 solutions are characterized by concentration fluctuations that become progressively stronger upon approach to the liquid-liquid phase boundary, whereas micellar growth is negligible. Such observations confirm previous views of the role of the surfactant phase boundary in tuning attractive micellar interactions, which can be used effectively to change the nature and strength of interparticle interactions in colloidal dispersions. Colloidal silica particles were then added to these surfactant mixtures and were found to aggregate at conditions near the cloud point. This finding is relevant to current strategies for protein crystallization.  相似文献   

20.
Here, we review two recent theoretical models in the field of ionic surfactant micelles and discuss the comparison of their predictions with experimental data. The first approach is based on the analysis of the stepwise thinning (stratification) of liquid films formed from micellar solutions. From the experimental step-wise dependence of the film thickness on time, it is possible to determine the micelle aggregation number and charge. The second approach is based on a complete system of equations (a generalized phase separation model), which describes the chemical and mechanical equilibrium of ionic micelles, including the effects of electrostatic and non-electrostatic interactions, and counterion binding. The parameters of this model can be determined by fitting a given set of experimental data, for example, the dependence of the critical micellization concentration on the salt concentration. The model is generalized to mixed solutions of ionic and nonionic surfactants. It quantitatively describes the dependencies of the critical micellization concentration on the composition of the surfactant mixture and on the electrolyte concentration, and predicts the concentrations of the monomers that are in equilibrium with the micelles, as well as the solution’s electrolytic conductivity; the micelle composition, aggregation number, ionization degree and surface electric potential. These predictions are in very good agreement with experimental data, including data from stratifying films. The model can find applications for the analysis and quantitative interpretation of the properties of various micellar solutions of ionic surfactants and mixed solutions of ionic and nonionic surfactants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号