首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Boron-doped silicon single crystals of 207 mm diameter with various growing conditions are grown from a large amount of the melt in the cusp-magnetic Czochralski method, and the effects of growing parameters on dopant concentrations in the crystals are experimentally investigated. Equilibrium distribution coefficient of boron calculated by BPS model is 0.716. With the crystal rotation (ω) of 13 rpm and the crucible rotation of , the effective distribution coefficient (ke) is 0.751 in zero magnetic strength and increases up to 0.78 in the magnetic strength of 640 G. For , there is no significant influence of ω on ke. With , ke is almost unity. The experimental results are compared with theory.  相似文献   

2.
A diffusive capture reaction of dopant atoms by relevant host atoms, via the Rideal–Eley mechanism, in GaAs grown by organometallic vapor-phase epitaxy is shown to result in the dopant concentration in the crystal acquiring a dependence on pGa (which is proportional to the growth rate) in agreement with data on SAs, ZnGa, and SiGa where pGa is the partial pressure of trimethylgallium in the input gas stream.  相似文献   

3.
Nanocrystalline hydroxyapatite [HA, Ca10(PO4)6(OH)2] powders were synthesized by the mechanochemical–hydrothermal method using emulsion systems consisting of aqueous phase, petroleum ether (PE) as the oil phase and biodegradable Tomadol 23–6.5 as the nonionic surfactant. (NH4)2HPO4 and Ca(NO3)2 or Ca(OH)2 were used as the phosphorus and calcium sources, respectively. The calcium source and emulsion composition had significant effects on the stoichiometry, crystallinity, thermal stability, particle size and morphology of final products. Disperse HA crystals with a 160 nm length and aspect ratio of ca. 6 were formed in an emulsion system containing 10 wt% PE, 60 wt% water and 30 wt% surfactant. The HA particles had needle morphology with a specific surface area of . With this technique, HA nanopowders with specific surface areas in the range of 72– were produced.  相似文献   

4.
The diffusion of Vanadium has been studied in V-doped GaAs layers (GaAs:V) grown by Metal-Organic Chemical Vapour Deposition (MOCVD) using secondary ion mass spectroscopy (SIMS). The vanadium (V) concentration profiles of sandwiched structures made of alternatively undoped and V doped GaAs layers have shown a concentration independent diffusion coefficient (DV) for varying V doping levels from 1018 to 1019 cm−3. Measurements of DV at 550, 615 and 680 °C indicate that the temperature dependence of DV can be represented by the Arrhenius equation:  cm2 s−1. It is suggested that V diffuses via interstitial sites.  相似文献   

5.
Single crystals of Ba2HoRu1−xCuxO6 have been grown from high temperature solutions using PbO–PbF2 as solvent in the temperature range 1150–1250 °C. Crystals with a six sided plate like morphology measuring up to 3 mm across and 0.5 mm thick and polyhedral habit measuring up to 2 and 1 mm in thick mass were obtained. Powder X-ray diffraction patterns obtained on the crystals were indexed to give a monoclinic space group P21/n with lattice parameters a=5.875(2), b=5.874(3), c=8.960(1) and β=89.995(2)°. The crystals with x=0 show a single anomaly at 6.5 K corresponding to an antiferromagnetic phase with . The crystals containing Cu show additional anomalies at 18 and 48 K. The SEM and EDS analysis reveals a 2116 phase.  相似文献   

6.
Nucleation of AlN on SiC substrates by seeded sublimation growth   总被引:1,自引:0,他引:1  
The nucleation of aluminum nitride (AlN) on silicon carbide (SiC) seed by sublimation growth was investigated. Silicon-face, 8 off-axis 4H-SiC (0 0 0 1) and on-axis 6H-SiC (0 0 0 1) were employed as seeds. Initial growth for 15 min and extended growth for 2 h suggested that 1850 °C was the optimum temperature of AlN crystal growth: on an 8 off-axis substrate, AlN grew laterally forming a continuous layer with regular “step” features; on the on-axis substrate, AlN grew vertically as well as laterally, generating an epilayer with hexagonal sub-grains of different sizes. The layer's c-lattice constant was larger than pure AlN, which was caused by the compression of the AlN film and impurities (Si, C) incorporation. Polarity sensitive and defect selective etchings were performed to examine the surface polarity and dislocation density. All the samples had an Al-polar surface and no N-polar inversion domains were observed. Threading dislocations were present regardless of the substrate misorientation. Basal plane dislocations (BPDs) were revealed only on the AlN films on the 8 off-axis substrates. The total dislocation density was in the order of when the film was 20– thick.  相似文献   

7.
We have investigated the cross-contamination of As in GaSb/InAs superlattices. We demonstrate a method of varying the lattice constant of the superlattice. By controlling the As background pressure in the growth chamber, the strain can be controlled to about 0.01%, corresponding to As cross-incorporation variations of about ±1%. The distribution of As is investigated by X-ray diffraction and cross-sectional scanning tunneling microscopy, and the critical thickness is obtained.  相似文献   

8.
The tri-methyl-Sb flow and the surfactant time dependence of photocurrent (PC) spectra was studied on InGaAsN/GaAs-strained multiple quantum wells (MQWs) structures grown by using metalorganic chemical vapor deposition (MOCVD). The structural properties of InGaAsN/GaAs-strained MQWs were investigated by using high-resolution X-ray diffraction (HRXRD). In the case of InGaAsN/GaAs-strained MQWs, an increase in compressive strain from an analysis of the satellite peaks in HRXRD was observed on increasing the tri-methyl-Sb flow and the surfactant time. For InGaAsN/GaAs-strained MQWs, the peaks observed in the photocurrent spectra were preliminarily assigned to electron–heavy hole (e1–hh) and electron–light hole (e1–lh) fundamental excitonic transitions. Their peaks are red-shifted with increasing tri-methyl-Sb flow and surfactant time. But the photocurrent peak is blue-shifted at the surfactant time of . It seems to be due to the improvement of structure properties at interface owing to a surfactant-suppressing surface diffusion phenomenon during growth. We compared this with the result of the experimental energies for InGaAsN/GaAs-strained MQWs.  相似文献   

9.
We are interested in determining the origin of the instabilities occurring in a metallic liquid (Prandtl number Pr=0.026) contained in horizontal circular cylinders heated from the end-walls. Our approach by direct numerical simulation (DNS) allows the determination of the transition thresholds for different aspect ratios varying from 1.5 to 10 as well as a precise characterization of the nature and structure of the new flow regimes close to the thresholds. In order to understand the mechanisms of flow transition, fluctuating energy analyses close to the threshold have been performed. The main contributions have been determined and localized in the cavity: shear has been found as the main instability factor but the way it acts is different according to the aspect ratio.  相似文献   

10.
The growth and aggregation of calcium oxalate monohydrate (COM) crystals beneath dipalmitoylphosphatidylcholine (DPPC) monolayers in the presence of chondroitin sulfate A (C4S) was systematically examined under different surface pressure. The results indicated that the addition of C4S can inhibit the crystal growth and prevent the aggregation of COM crystals. Under a DPPC monolayer, well-defined three-dimensional hexagonal prisms and three-dimensional rhombus prisms with sharply angled tips were obtained. The DPPC monolayer at a surface pressure of 10 mN/m can match the Ca2+ distance of the face of COM better than at 20 mN/m. The addition of C4S could cooperatively modulate the interaction strength between the monolayer (or itself) with the specific morphology determining faces such as and (0 2 0), and thus results in remarkable stabilization of the faces. The dramatic changes in morphological details were due to the strong electrostatic interactions between the Ca2+-rich crystal faces of COM and the polyanionic polysaccharide C4S together with the negatively charged sites of the zwitterionic DPPC monolayers. The increase of the concentration of C4S can further enhance the stabilization of the face.  相似文献   

11.
The densities have been systematically measured in xLi2O–(1−x)B2O3 melts of different compositions with Li2O content varying from x=0 to 0.68 from their respective melting points up to about 1450 K with a modified Archimedean method. The density decreased with increasing temperature for all the melts measured in this work. When x<0.15, the plot of temperature versus density could be well fitted by a quadratic polynomial function, and when x0.15, density decreased linearly with increasing temperature. At a fixed temperature, the density of the melts increased rapidly with Li2O content, went through a maximum at about x=0.333 (Li2O–2B2O3), and then decreased slowly as Li2O content was further increased. In addition, the volume expansion coefficient (β) was calculated based on the densities measured in this work, and it was found that a maximum value appeared in the dependence of β on the molar ratio of Li2O at about x=0.333.  相似文献   

12.
The strain state of 570 nm AlxGa1−xN layers grown on 600 nm GaN template by metal organic chemical vapor deposition was studied using Rutherford backscattering (RBS)/channeling and triple-axis X-ray diffraction measurements. The results showed that the degree of relaxation (R) of AlxGa1−xN layers increased almost linearly when x0.42 and reached to 70% when x=0.42. Above 0.42, the value of R varied slowly and AlxGa1−xN layers almost full relaxed when x=1 (AlN). In this work the underlying GaN layer was in compressive strain, which resulted in the reduction of lattice misfit between GaN and AlxGa1−xN, and a 570 nm AlxGa1−xN layer with the composition of about 0.16 might be grown on GaN coherently from the extrapolation. The different shape of (0 0 0 4) diffraction peak was discussed to be related to the relaxation.  相似文献   

13.
We report measurements of the initial growth and subsequent transient response of dendritic crystals of ammonium chloride grown from supersaturated aqueous solution. Starting from a small, nearly spherical seed held in unstable equilibrium, we lower the temperature to initiate growth. The growth speed and tip radius approach the same steady state values independent of initial seed size. We then explore the response of the growing dendrite to changes in temperature. The crystal adjusts quickly and smoothly to the new growth conditions, maintaining an approximately constant value of vρ2 throughout. Dissolving dendrites, on the other hand, are not characterized by the same value of vρ2.  相似文献   

14.
As stoichiometric LiTaO3 (LT) draws a considerable attention for integrated optical waveguide devices, we have investigated Zn diffusion into this material by diffusing 70- nm-thick ZnO films deposited on y-cut LT substrates at 700–900 °C under various atmospheres. It was observed that the surface quality was very sensitive to pressure, but weakly affected by other diffusion conditions such as temperature and atmosphere. While the surface degraded, being covered with some residuals after heat treatment at the atmospheric pressure, it was very smooth and clear when the pressure was lowered below about 10 Torr. Another feature of Zn-diffused stoichiometric LT is that the crystal maintains its transparency even after diffusion at a pressure as low as 0.1 Torr, thus without a post-annealing step required. The diffusion coefficient varied from D=1.1×10-2 to 5.5×10−1 μm2/h in the given temperature range, with an activation energy of .  相似文献   

15.
We have investigated compositional plane of a wide band gap solid solution semiconductor Ca1−xCdxSe1−ySy (x0.32) using powder synthesis under thermal equilibrium condition. The solubility limit at 1273 K varies with respect to the Se concentration y, taking a minimum Cd solubility limit of 0.12 at y=0.8 and a maximum limit of 0.32 at y=1.0. It is found that the system can be lattice-matched to GaAs and InP under covering the energy band gap of ultraviolet–visible region. These results allow to design optoelectronic devices adopting the Ca1−xCdxSe1−ySy system.  相似文献   

16.
17.
We have first of all studied (in reduced pressure–chemical vapour deposition) the high-temperature growth kinetics of SiGe in the 0–100% Ge concentration range. We have then grown very high Ge content (55–100%) SiGe virtual substrates at 850 °C. We have focused on the impact of the final Ge concentration on the SiGe virtual substrates’ structural properties. Polished Si0.5Ge0.5 virtual substrates were used as templates for the growth of the high Ge concentration part of such stacks, in order to minimize the severe surface roughening occurring when ramping up the Ge concentration. The macroscopic degree of strain relaxation increases from 99% up to values close to 104% as the Ge concentration of our SiGe virtual substrates increases from 50% up to 100% (discrepancies in-between the thermal expansion coefficients of Si and SiGe). The surface root mean square roughness increases when the Ge concentration increases, reaching values close to 20 nm for 100% of Ge. Finally, the field (the pile-up) threading dislocations density (TDD) decreases as the Ge concentration increases, from 4×105 cm−2 (1–2×105 cm−2) for [Ge]=50% down to slightly more than 1×105 cm−2 (a few 104 cm−2) for [Ge]=88%. For [Ge]=100%, the field TDD is of the order of 3×106 cm−2, however.  相似文献   

18.
The floating zone technique was employed to grow multicrystalline Si with controlled grain boundary configuration. Purposely designed bi-crystals were utilized as seed crystals to investigate the effect of the tilt angle from the perfect twin boundary on the growth behavior. When the growth was initiated from a bi-crystal with a Σ3 twin boundary, no particular change took place on the grain boundary configuration during growth. On the other hand, the decrease of the tilt angle during growth was observed when the growth was initiated from a bi-crystal with a tilted boundary from Σ3. This was accompanied by the appearance of new crystal grains. The reduction of the total interface energy would be a possible driving mechanism for this phenomenon.  相似文献   

19.
Nanocrystalline Mn3O4 has been synthesized by ultrasonic irradiation of Mn acetate solution in water. Analysis of its X-ray diffraction data shows formation of a phase-pure compound with an average particle size of about 15 nm. DC magnetization measurements as a function of temperature and field show a reduced ferrimagnetic transition temperature as compared to those reported for the bulk , and a subsequent observation of superparamagnetic behavior at 40 K. The observed magnetic properties are suggestive of formation of a single domain magnetically ordered Mn3O4 nanoparticles below their ferrimagnetic transition temperature.  相似文献   

20.
We report about the formation of twinning-superlattice regions in Si epitaxial layers grown by molecular beam epitaxy on Si(1 1 1)()R30°-B surfaces. Twinning-superlattice regions were formed by periodical arrangement of 180° rotation twin boundaries along [1 1 1]-direction and are only separated by a few nanometers. The preparation method consists of repeating several growth, boron-deposition and annealing cycles on boron-predeposited undoped Si substrates. It is shown that the amount of subsurface boron and the growth mode influence the formation of twin boundaries. Only the nucleation of Si on the Si(1 1 1)()R30°-surface covered by at least ML boron results in the formation of 180° rotation twins. The size of superlattice regions is restricted by surface morphology. However, the presented technology should also be suitable to prepare a new type of semiconductor heterostructure based on Si polytypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号