首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
研究了聚环氧乙烷(PEO)/聚2-乙烯基吡啶(P2VP)的共混物分别经LiCLO4、四氰基代苯醌二甲烷(TCNQ)及两者共同掺杂后其共混物的离子、电子及混合导电率。当PEO与P2VP的重量比分别为6/4、5/5及4/6时,共混物的混合导电率大于相应的离子及电子导电率的总和,呈现协同效应。从共混物外观的研究发现LiCLO4能作为PEO/P2VP共混体系的增容剂。  相似文献   

2.
采用熔融共混方法制备了聚乳酸与聚氧化乙烯的共混物.细致研究了重均分子量分别为2 kDa、10kDa1、00 kDa和600 kDa的聚氧化乙烯对聚乳酸的改性效果,并使用DSC、DMA及旋转流变仪等分析了共混物的相容性、热行为、力学性能和流变行为.结果表明,在聚氧化乙烯的组分含量不超过20 wt%的前提下,共混体系保持为完全相容体系,当聚氧化乙烯的分子量超过10 kDa时,其对聚乳酸的增塑效果,不随分子量增加而降低;增加聚氧化乙烯的分子量,可以提高材料的弹性模量和熔体强度.  相似文献   

3.
IntroductionThesecondarylithium ionbatterieshaverecentlybecomeoneofthechemicalenergysourceswhichhavebeenresearchedanddevelopedintheworldbecauseoftheirbiggerspecificcapacity ,lighterweight ,higheroperatingvoltage ,longercycliclifeandbettersecuri ty[1— 3] .LiClO4 ,LiAsF6 andLiPF6 aremainlyusedaselectrolytesinthecommercializedlithium ioncellsintheworldinspiteoftheirdisadvantages:LiClO4 isalittleunsafewhichwillbedetonablewhenbeingbumpedandishygroscopic ;LiAsF6 ispoisonousanditisanenvironment…  相似文献   

4.
含锂沸石Li-FER提高PEO复合聚合物电解质电导率   总被引:3,自引:0,他引:3  
通过离子交换方法使锂部分取代了镁碱沸石(FER)孔道壁上羟基中的氢,制得含锂沸石Li-FER. 将这种沸石作为无机填料加入到PEO/LiClO4聚合物电解质中,可以使其室温电导率提高三个数量级以上. 电化学测量表明, 锂离子与PEO和含锂沸石中氧的相互作用提高了聚合物电解质中锂离子的迁移数. 另一方面, 采用XRD, DSC, PLM等方法研究了电解质的结晶状况.结果表明, Li-FER可以作为PEO链段结晶的成核剂,使PEO电解质的晶粒得到细化, 结晶度降低,为Li+的传输提供了更多的非晶区通道. 这是Li-FER的加入促使PEO聚合物电解质电导率提高的两个主要原因.  相似文献   

5.
将聚氧化乙烯(PEO)和二(三氟甲基磺酰)亚胺锂(LiTFSI)混合(固定EO/Li摩尔比为13)后, 采用溶液浇注法制备了一系列不同Li1.5Al0.5Ge1.5(PO4)3(LAGP)与PEO质量比的LAGP-PEO(LiTFSI)固体复合电解质体系. 结合电化学阻抗法、 表面形貌表征以及与惰性陶瓷填料(SiO2, Al2O3) 性能的对比分析, 探讨了LAGP在固体复合电解质中的作用机理以及锂离子的导电行为. 结果表明, 在以LAGP为主相的固体复合电解质中, PEO主要处于无定形态, 整个体系主要为PEO与LiTFSI的络合相、 LAGP与PEO(LiTFSI)相互作用形成的过渡相和LAGP晶相. 其中LAGP作为主要的导电基体不仅起到降低PEO结晶度、 改善两相导电界面的作用; 同时自身也可以作为离子传输的通道, 降低锂离子迁移的活化能, 从而使离子电导率得到提高. 当LAGP与PEO的质量比为6:4时, 固体复合电解质的成膜性能最好, 离子电导率最高, 在30 ℃时为2.57×10-5 S/cm, 接近LAGP的水平, 电化学稳定窗口超过5 V.  相似文献   

6.
通过尿素对高岭石的插层及随后的超声脱除处理,制备了一种片层剥离的高岭石粉体,并将这种剥离高岭石与聚氧化乙烯/高氯酸锂(PEO/LiClO_4)体系复合,制备出PEO/高岭石复合物.采用X射线衍射仪、红外光谱仪、扫描电子显微镜、透射电子显微镜、扫描量热仪、电化学工作站和万能材料试验机进行结构表征和性能测试.结果表明,尿素在高岭石层间的插层和脱除引起了高岭石片层的剥离,片层厚度小于50 nm.剥离高岭石在PEO/LiClO_4体系中与PEO形成了强烈的氢键作用,促进了PEO结晶度的降低,进而提高复合物的离子电导率.含有20 wt%剥离高岭石填料的PEO/高岭石复合物的离子电导率达到6.0×10~(-5) S/cm,与未复合的PEO/LiClO_4相比,提高了一个数量级.复合物制备过程中的烘干温度对PEO的结晶度会产生一定的影响,95°C下的烘干处理能得到结晶度较低,离子电导率较高的复合物.此外,剥离高岭石的添加显著提高了聚合物的杨氏模量和拉伸强度,与未复合的PEO/LiClO_4相比,杨氏模量和拉伸强度最大提高了256%和121%.  相似文献   

7.
A novel polymer electrolyte with the formula of Li2B4O7-PVA for lithium-ion battery was synthesized and its ion conductivity and mechanical properties were also tested. It is found that the conductivity of the prepared polymer electrolytes is higher than that of LiClO4/PEO or LiClO4/EC-DMC by two or three orders in magnitude and a large delocalized bond formed in Li2B4O7-PVA lead to transportation of Li ion easier, this electrolyte possesses high thermo-stability and can be used under 200℃.  相似文献   

8.
Exploiting the ability of the [M(SC[O]Ph)(4)](-) anion to behave like an anionic metalloligand, we have synthesized [Li[Ga(SC[O]Ph)(4)]] (1), [Li[In(SC[O]Ph)(4)]] (2), [Na[Ga(SC[O]Ph)(4)]] (3), [Na(MeCN)[In(SC[O]Ph)(4)]] (4), [K[Ga(SC[O]Ph)(4)]] (5), and [K(MeCN)(2)[In(SC[O]Ph)(4)]] (6) by reacting MX(3) and PhC[O]S(-)A(+) (M = Ga(III) and In(III); X = Cl(-) and NO(3)(-); and A = Li(I), Na(I), and K(I)) in the molar ratio 1:4. The structures of 2, 4, and 6 determined by X-ray crystallography indicate that they have a one-dimensional coordination polymeric structure, and structural variations may be attributed to the change in the alkali metal ion from Li(I) to Na(I) to K(I). Crystal data for 2 x 0.5MeCN x 0.25H(2)O: monoclinic space group C2/c, a = 24.5766(8) A, b = 13.2758(5) A, c = 19.9983(8) A, beta = 108.426(1) degrees, Z = 8, and V = 6190.4(4) A(3). Crystal data for 4: monoclinic space group P2(1)/c, a = 10.5774(7) A, b = 21.9723(15) A, c = 14.4196(10) A, beta = 110.121(1) degrees, Z = 4, and V = 3146.7(4) A(3). Crystal data for 6: monoclinic space group P2(1)/c, a = 12.307(3) A, b = 13.672(3) A, c = 20.575(4) A, beta = 92.356(4) degrees, Z = 4, and V = 3458.8(12) A(3). The thermal decomposition of these compounds indicated the formation of the corresponding AMS(2) materials.  相似文献   

9.
PEO/LiClO_4纳米SiO_2复合聚合物电解质的电化学研究   总被引:8,自引:0,他引:8  
将实验室制备的纳米二氧化硅和市售纳米二氧化硅粉末与PEO LiClO4复合 ,制得了复合PEO电解质 .它们的室温离子电导率可比未复合的PEO电解质提高 1~ 2个数量级 ,最高可以达到 1 2 4× 10 - 5S cm .离子电导率的提高有两方面的原因 :一是无机二氧化硅粉末的加入抑制了PEO的结晶 ,是二氧化硅粉末和聚合物电解质之间形成的界面对电导率的提高也有一定的作用 .在进一步加入PC EC(碳酸丙烯酯 碳酸乙烯酯 )混合增塑剂后制得的复合凝胶PEO电解质 ,可使室温离子电导率再提高 2个数量 ,达到 2× 10 - 3 S cm .用这种复合凝胶PEO电解质组装了Li|compositegelelectrolyte|Li半电池 ,并测量了该半电池的交流阻抗谱图随组装后保持时间的变化 ,实验观察到在保持时间为 144h以内钝化膜的交流阻抗迅速增大 ,但在随后的时间内逐渐趋于平稳 ,表明二氧化硅粉末的加入可以有效地抑制钝化膜的生长  相似文献   

10.
New super‐tough poly(butylene terephthalate) (PBT)/poly(ethylene‐octene) copolymer (PEO) blends containing 2 wt% poly(ethylene‐co‐glycidyl methacrylate) (EGMA) as a compatibilizer were obtained by extrusion and injection molding. The blends comprised of an amorphous PBT‐rich phase with some miscibilized EGMA, a pure PEO amorphous phase, and a crystalline PBT phase that was not influenced by the presence of either PEO or EGMA. The blends showed a fine particle size up to 20 wt% PEO content. Super‐tough blends were obtained with PEO contents equal to or higher than 10%. The maximum toughness was very high (above 710 J/m) and was attained with 20% PEO without chemical modification of the commercial components used. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
一种梳状高分子固体电解质的分子运动和离子导电性   总被引:6,自引:3,他引:6  
用交流复阻抗谱和动态粘弹谱等对交替马来酸酐共聚物多缩乙二醇酯衍生物及其LiClO4盐复合物进行了研究.结果表明,在Li/EO=0.07—0.042范围内,从173K到373K,本聚合物一高氯酸锂复合体系的动态粘弹谱存在着两个明显的转变,其中β转变归属于PEO的侧链玻璃化转变,转变温度随LiClO4盐浓度的增加而增加。α转变归属于主链玻璃化转变,在Li/EO=0.028时有极大值。盐浓度与电导率的关系与通常不一样,在所研究盐浓度范围内观察到两个峰,其一在Li/EO<0.014,另一峰在Li/EO=0.028.电导率与温度的依赖关系不符合Arrhenius行为;以lgσ对1/T-T0作图,用侧链玻璃化转变温度Tβ作T0时,呈典型的VTF行为。该体系室温电导率最高可达6×10-6s/cm.  相似文献   

12.
New quaternary lithium - d(0) cation - lone-pair oxides, Li(6)(Mo(2)O(5))(3)(SeO(3))(6) (Pmn2(1)) and Li(2)(MO(3))(TeO(3)) (P2(1)/n) (M = Mo(6+) or W(6+)), have been synthesized and characterized. The former is noncentrosymmetric and polar, whereas the latter is centrosymmetric. Their crystal structures exhibit zigzag anionic layers composed of distorted MO(6) and asymmetric AO(3) (A = Se(4+) or Te(4+)) polyhedra. The anionic layers stack along a 2-fold screw axis and are separated by Li(+) cations. Powder SHG measurements on Li(6)(Mo(2)O(5))(3)(SeO(3))(6) using 1064 nm radiation reveal a SHG efficiency of approximately 170 × α-SiO(2). Particle size vs SHG efficiency measurements indicate Li(6)(Mo(2)O(5))(3)(SeO(3))(6) is type 1 nonphase-matchable. Converse piezoelectric measurements result in a d(33) value of ~28 pm/V and pyroelectric measurements reveal a pyroelectric coefficient of -0.43 μC/m(2)K at 50 °C for Li(6)(Mo(2)O(5))(3)(SeO(3))(6). Frequency-dependent polarization measurements confirm that Li(6)(Mo(2)O(5))(3)(SeO(3))(6) is nonferroelectric, i.e., the macroscopic polarization is not reversible, or 'switchable'. Infrared, UV-vis, thermogravimetric, and differential thermal analysis measurements and electron localization function calculations were also done for all materials.  相似文献   

13.
The novel porous [{M(F-pymo)(2)}(n)]2.5n H(2)O coordination networks (M=Co, Zn; F-pymo=5-fluoropyrimidin-2-olate), possessing sodalitic topology, have been synthesised and structurally characterised by means of powder diffraction methods. Thermodiffractometry demonstrated their plasticity: when heated up to 363 K, they reversibly transform into three-dimensional dehydrated [{M(F-pymo)(2)}(n)] species, with significantly different lattice parameters. Further heating induces irreversible polymorphic transformations into layered phases, in which the original MN(4) coordination sphere changes into an MN(3)O one. A mixed-metal phase, [{Co(x)Zn(1-x)(F-pymo)(2)}(n)]2.5n H(2)O, was also prepared, showing that zinc is preferentially inserted, when starting from a Co/Zn reagent ratio of 1:1. The solid-gas adsorption properties of the anhydrous 3D frameworks have been explored towards N(2), H(2) (77 K) and CH(4), CO(2) (273 K). These results show that these materials permit the diffusion of CO(2) molecules only. Remarkably, the CO(2) adsorption process for the [{Co(F-pymo)(2)}(n)] network proceeds in two steps: the first step takes place at low pressures (<600 kPa) and the second one above a threshold pressure of 600 kPa. By contrast, the [{Zn(F-pymo)(2)}(n)] network only permits CO(2) diffusion by applying pressures above 900 kPa. This type of behaviour is typical of porous networks with gated channels. The high CO(2) selectivity of these systems over the rest of the essayed probe gases is explained in terms of flexibility and polarity of the porous network. Finally, the magnetic studies on the Co(II) systems reveal that the as synthesised [{Co(F-pymo)(2)}(n)]2.5n H(2)O material behaves as an antiferromagnet with a T(N) of about 29 K. At variance, the [{Co(F-pymo)(2)}(n)] layered phase shows an unusually weak ferromagnetic ordering below 17 K, arising from a spin-canting phenomenon.  相似文献   

14.
A family of alkali salts of octanuclear oxothiomolybdate rings has been synthesized by crystallization of the [Mo(8)S(8)O(8)(OH)(8)[HMO(5)(H(2)O)]](3-) (noted HMo(8)M(3-); M=Mo, W) and [Mo(8)S(8)O(8)(OH)(8)(C(2)O(4))](2-) (noted Mo(8)ox(2-)) anions in an aqueous solution of ACl (A=Li, Na, K, Rb). Single-crystal X-ray diffraction experiments have been performed showing that the alkali salts exhibit a similar three-dimensional structure. Disordered alkali ions form columns to which the anionic rings are anchored. Ionic-conductivity measurements on pressed pellets have revealed two different behaviors. The lithium salts of HMo(8)M(3-) (M=Mo, W) are moderately good proton conductors at room temperature (sigma=10(-5) S cm(-1)) and the profile of conductivity as a function of relative humidity shows that the conductivity is due to surface-proton motion (particle-hydrate-type mechanism). On the other hand, the lithium salt of Mo(8)ox(2-) competes with the best crystalline lithium conductors at room temperature (sigma=10(-3) S cm(-1)), and (7)Li NMR experiments confirm the mobility of the lithium ions along the one-dimensional channels of this material.  相似文献   

15.
The structure and chain dynamics of polyethylene oxide (PEO)/LiClO(4) complex crystals were studied by employing state-of-the-art solid-state (13)C NMR techniques. Remarkable helical jump motions of the PEO segments in the complex crystals at ambient temperatures were clearly demonstrated. The jump motions are believed to induce the transportation of the coordinated Li(+) ions along the crystallographic c axis, providing a novel mechanism of ionic conductivity of the complex crystals. In addition, this work also shows that solid-state high-resolution (13)C NMR spectroscopy can be a powerful and general tool for elucidating phase structures, dynamics, and subsequently the conduction mechanism of crystalline polymer electrolytes.  相似文献   

16.
The system Li-V-N was studied by means of X-ray and neutron powder diffraction, thermal and chemical analyses, and XAS spectroscopy at the vanadium K-edge. Three polymorphs of Li(7)[VN(4)] have been established from X-ray and neutron powder diffraction (gamma-Li(7)[VN(4)], space group Pfourmacr;3n, No. 218, a = 960.90(4) pm, V = 887.23(6) x 10(6) pm(3), Z = 8; beta-Li(7)[VN(4)], space group Pathremacr;, No. 205, a = 959.48(3) pm, V = 883.31(5) x 10(6) pm(3), Z = 8; alpha-Li(7)[VN(4)], P4(2)/nmc, No. 137, a = 675.90(2) pm, c = 488.34(2) pm, V = 223.09(1) x 10(6) pm(3), Z = 2). Crystallographic and phase relations are discussed. All three modifications are diamagnetic, indicating vanadium in the oxidation state +5. The V-K XAS spectra support the oxidation state assignment, the non-centrosymmetric coordination (tetrahedral), and the nearly identical second coordination sphere of vanadium, made up from Li in all three phases. The 3d-related features of the spectra display strongly localized properties. The phase transitions appear to be reconstructive; no direct group-subgroup symmetry relations of the crystal structures exist. The formation of solid solutions between Li(2)O and beta-Li(7)[VN(4)] with the general formula Li(1.75)((V(0.25(1)(-)(x))Li(0.25)(x))(N(1)(-)(x)O(x)())) with 0 相似文献   

17.
The reaction of K3[M(III)(ox)3].3H2O [M = V (1), Cr; ox = oxalate], Mn(II)/V(II), and [N(n-Bu)4]Br in water leads to the isolation of 2-D V-based coordination polymers, [[N(n-Bu)4][Mn(II)V(III)(ox)3]]n (2), [[N(n-Bu)4][V(II)Cr(III)(ox)3]]n (3), [[N(n-Bu)4][V(II)V(III)(ox)3]]n (4), and an intermediate in the formation of 4, [[N(n-Bu)4][V(II)V(III)(ox)3(H2O)2]]n.2.5H2O (4a), while 1-D [V(II)(ox)(H2O)2]n (5) is obtained by using Na2ox and [V(OH2)6]SO4 in water. The structures of 1-5 have been investigated by single crystal and/or powder X-ray crystallography. In 1, V(III) is coordinated with three oxalate dianions as an approximately D3 symmetric, trigonally distorted octahedron. 1 is paramagnetic [mu(eff) = 2.68 mu(B) at 300 K, D = 3.84 cm(-1) (D/k(B) = 5.53 K), theta = -1.11 K, and g = 1.895], indicating an S = 1 ground state. 2 exhibits intralayer ferromagnetic coupling below 20 K, but does not magnetically order above 2 K, and 3 shows a strong antiferromagnetic interaction between V(II), S = 3/2 and Cr(III), S = 3/2 ions (theta = -116 K) within the 2-D layers. 4 and 4a magnetically order as ferrimagnets at T(c)'s, taken as the onset of magnetization, of 11 and 30 K, respectively. The 2 K remanent magnetizations are 2440 and 2230 emu.Oe mol(-1) and the coercive fields are 1460 and 4060 Oe for 4 and 4a, respectively. Both 4 and 4a clearly show frequency dependence, indicative of spin-glass-like behavior. The glass transition temperatures were at 6.3 and 27 K, respectively, for 4 and 4a. 1-D 5 exhibits antiferromagnetic coupling of -4.94 cm(-1) (H = -2Jsigma(i=1)n.S(i-1) - gmu(B)sigma(i=0)(n)H.S(i)) between the V(II) ions.  相似文献   

18.
The novel heteropolyanion [Cu(4)K(2)(H(2)O)(8)(alpha-AsW(9)O(33))(2)](8)(-) (1) has been synthesized and characterized by IR spectroscopy, elemental analysis, and magnetic studies. Single-crystal X-ray analysis was carried out on [K(7)Na[Cu(4)K(2)(H(2)O)(6)(alpha-AsW(9)O(33))(2)].5.5H(2)O](n)(K(7)Na-1), which crystallizes in the tetragonal system, space group P42(1)m, with a = 16.705(4) A, b = 16.705(4) A, c = 13.956(5) A, and Z = 2. Interaction of the lacunary [alpha-AsW(9)O(33)](9)(-) with Cu(2+) ions in neutral, aqueous medium leads to the formation of the dimeric polyoxoanion 1 in high yield. Polyanion 1 consists of two alpha-AsW(9)O(33) units joined by a cyclic arrangement of four Cu(2+) and two K(+) ions, resulting in a structure with C(2)(v)() symmetry. All copper ions have one terminal water molecule, resulting in square-pyramidal coordination geometry. Three of the copper ions are adjacent to each other and connected via two micro(3)-oxo bridges. EPR studies on K(7)Na-1 and also on Na(9)[Cu(3)Na(3)(H(2)O)(9)(alpha-AsW(9)O(33))(2)].26H(2)O (Na(9)-2) over 2-300 K yielded g values that are consistent with a square-pyramidal coordination around the copper(II) ions in 1 and 2. No hyperfine structure was observed due to the presence of strong spin exchange, but fine structure was observed for the excited (S(T) = 3/2) state of Na(9)-2 and the ground state (S(T) = 1) of K(7)Na-1. The zero-field (D) parameters have also been determined for these states, constituting a rare case wherein one observes EPR from both the ground and the excited states. Magnetic susceptibility data show that Na(9)-2 has antiferromagnetically coupled Cu(2+) ions, with J = -1.36 +/- 0.01 cm(-)(1), while K(7)Na-1 has both ferromagnetically and antiferromagnetically coupled Cu(2+) ions (J(1) = 2.78 +/- 0.13 cm(-)(1), J(2) = -1.35 +/- 0.02 cm(-)(1), and J(3) = -2.24 +/- 0.06 cm(-)(1)), and the ground-state total spins are S(T) = 1/2 in Na(9)-2 and S(T) = 1 in K(7)Na-1.  相似文献   

19.
The reaction of ((t)BuNH)(3)PNSiMe(3) (1) with 1 equiv of (n)BuLi results in the formation of Li[P(NH(t)Bu)(2)(N(t)Bu)(NSiMe(3))] (2); treatment of 2 with a second equivalent of (n)BuLi produces the dilithium salt Li(2)[P(NH(t)Bu)(N(t)Bu)(2)(NSiMe(3))] (3). Similarly, the reaction of 1 and (n)BuLi in a 1:3 stoichiometry produces the trilithiated species Li(3)[P(N(t)Bu)(3)(NSiMe(3))] (4). These three complexes represent imido analogues of dihydrogen phosphate [H(2)PO(4)](-), hydrogen phosphate [HPO(4)](2)(-), and orthophosphate [PO(4)](3)(-), respectively. Reaction of 4 with alkali metal alkoxides MOR (M = Li, R = SiMe(3); M = K, R = (t)Bu) generates the imido-alkoxy complexes [Li(3)[P(N(t)Bu)(3)(NSiMe(3))](MOR)(3)] (8, M = Li; 9, M = K). These compounds were characterized by multinuclear ((1)H, (7)Li, (13)C, and (31)P) NMR spectroscopy and, in the cases of 2, 8, and 9.3THF, by X-ray crystallography. In the solid state, 2 exists as a dimer with Li-N contacts serving to link the two Li[P(NH(t)Bu)(2)(N(t)Bu)(NSiMe(3))] units. The monomeric compounds 8 and 9.3THF consist of a rare M(3)O(3) ring coordinated to the (LiN)(3) unit of 4. The unexpected formation of the stable radical [(Me(3)SiN)P(mu(3)-N(t)Bu)(3)[mu(3)-Li(THF)](3)(O(t)Bu)] (10) is also reported. X-ray crystallography indicated that 10 has a distorted cubic structure consisting of the radical dianion [P(N(t)Bu)(3)(NSiMe(3))](.2)(-), two lithium cations, and a molecule of LiO(t)Bu in the solid state. In dilute THF solution, the cube is disrupted to give the radical monoanion [(Me(3)SiN)((t)BuN)P(mu-N(t)Bu)(2)Li(THF)(2)](.-), which was identified by EPR spectroscopy.  相似文献   

20.
Koo JE  Kim DH  Kim YS  Do Y 《Inorganic chemistry》2003,42(9):2983-2987
Cyano-bridged homometallic complex [Ni(baepn)(CN)](n)(ClO(4))(n)(1) and bimetallic complex [Ni(baepn)](2)(n)[Fe(CN)(6)](n)(H(2)O)(8)(n)(2) [baepn = N,N'-bis(2-aminoethyl)-1,3-propanediamine] were synthesized and characterized. 1 crystallizes in the monoclinic space group P2(1)/n with a = 9.560(3) A, b = 10.700(3) A, c = 14.138(9) A, beta = 90.18(6) degrees, and Z = 4; 2 crystallizes in the monoclinic space group P2(1)/c with a = 8.951(2) A, b = 13.672(3) A, c = 14.392(3) A, beta = 98.906(4) degrees, and Z = 4. The complex 1 has one-dimensional structure whose chain vector runs along the b axis with baepn ligands and perchlorate anions alternately arranged up and down in the c direction. The antiferromagnetic nature of 1 was explained in terms of the infinite chain model and Haldane gap, giving g = 2.33, J = -29.4 cm(-1), and the magnitude of Haldane gap E(g) = 5.22 K. The complex 2 that constitutes the first example of 2-D bimetallic assembly of Ni(II) ion and ferrocyanide anion is composed of the neutral layers based on the [Ni(4)Fe(4)] square grid spanning in the bc plane. For 2, the analysis with the Curie-Weiss law in 2-300 K range results in THETA = 0.200 K and the magnetism was explained in terms of the ability of ferrocyanide in the -Ni-NC-Fe-CN-Ni unit to promote ferromagnetic Ni-Ni interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号