首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A. F. Komarov 《Technical Physics》2001,46(11):1465-1469
A physicomathematical model and a BEAM2HD program for the dynamic simulation of one-and two-beam high-dose ion implantation into multilayer and multicomponent targets are developed. The number of target layers is no more than three, and the number of sorts of atoms in each of the layers is no more than seven. The simulation is performed by the Monte Carlo method. Numerical results for the formation of C x→3N y→4 superhard layers by two-beam high-dose implantation of nitrogen ions into the Si3N4/C/Si3N4/Si system are presented.  相似文献   

2.
ABSTRACT

Crystalline silicon oxy-nitride (SiON) composite films are deposited on Si substrate for multiple (5, 15, 25 and 50) focus shots (FS) by plasma focus device. The X-rays diffraction patterns reveal the development of various diffraction peaks related to Si, Si3N4, and SiO2 phases which confirms the formation of SiON composite film. The intensity of Si3N4 (1 0 2) plane is linearly increased with the increase of FS. The Si3N4 (1 0 2) phase does not nucleate for 5 FS. Raman analysis confirms the formation of β–Si–N phase. Raman and Fourier transform infrared spectroscopy analysis reveals that the strength of chemical bonds like Si–N, Si–O formed during the deposition process of SiON composite films is associated with the bonds intensity which in turn depends on the number of FS. The field emission scanning electron microscopic analysis reveals that the surface morphology like size, shape and distribution of micro/nano-dimensional particles, film compactness and the formation of micro-rods, micro-teethes and micro-tubes of SiON composite films is entirely associated with the rise in substrate surface transient temperature which in turn depends on the increasing number of FS. The EDX spectrum confirms the presence of Si (22.5?±?4.7 at. %), N (13.4?±?4.5 at. %) and O (54.7?±?11.3 at. %) in the SiON composite film. The thickness of SiON composite film deposited for 50 FS is found to ~15.47?µm.  相似文献   

3.
Summary Ultrafine Si, Si3N4, SiC and silicon oxynitride powders have been produced by irradiating gas-phase reactants by means of a CO2 laser. The mechanism of SiH4 CO2 laser-induced absorption and dissociation is discussed on the basis of the results of the spectral and time-resolved measurement of fragment chemiluminescence. The role played by the SiH2 radical in the powder formation is investigated. The quality of Si, Si3N4, SiC and silicon oxynitride powders is checked by means of several off-line diagnostics (IR spectroscopy, X-ray diffraction at wide and small angle, BET analysis). The possibility of controlling powder stoichiometry and doping from the gas-phase reactant concentration is discussed.  相似文献   

4.
Ultra thin films of pure silicon nitride were grown on a Si (1 1 1) surface by exposing the surface to radio-frequency (RF) nitrogen plasma with a high content of nitrogen atoms. The effect of annealing of silicon nitride surface was investigated with core-level photoelectron spectroscopy. The Si 2p photoelectron spectra reveals a characteristic series of components for the Si species, not only in stoichiometric Si3N4 (Si4+) but also in the intermediate nitridation states with one (Si1+) or three (Si3+) nitrogen nearest neighbors. The Si 2p core-level shifts for the Si1+, Si3+, and Si4+ components are determined to be 0.64, 2.20, and 3.05 eV, respectively. In annealed sample it has been observed that the Si4+ component in the Si 2p spectra is significantly improved, which clearly indicates the crystalline nature of silicon nitride. The high resolution X-ray diffraction (HRXRD), scanning electron microscopy (SEM) and photoluminescence (PL) studies showed a significant improvement of the crystalline qualities and enhancement of the optical properties of GaN grown on the stoichiometric Si3N4 by molecular beam epitaxy (MBE).  相似文献   

5.
The morphology of the tracks of swift ions revealed in amorphous silicon nitride after treatment in an HF solution is studied. The Si3N4/Si structures were irradiated with Fe, Kr, and W ions in the electron energy loss regime. Discontinuous tracks were recorded upon exposure to W only, with an electron energy loss of 20.4 keV nm−1 being maximal for the conditions of our experiment. The results from calculations of the track formation in Si3N4 based on the thermal spike model are presented.  相似文献   

6.
Using the photoluminescence surface state spectroscopy (PLS3) technique, attempts were made to determine the surface state density (Nss) distribution on AlxGa1−xAs (x≈0.3) surfaces passivated by the Si interface control layer (ICL) technique. Air-exposed AlGaAs epitaxial wafers which are technologically important for fabrication of various devices were passivated ex situ by forming a SiO2/Si3N4/Si ICL/AlGaAs structure after the HCl treatment and their photoluminescence behavior was investigated in detail. The result of the PLS3 analysis indicated that Si ICL-based passivation reduces the minimum interface state density value down to 1010 cm−2 eV−1 range. Some indication was also obtained that further improvements are possible by using electron cyclotron resonance (ECR)-enhanced N2 plasma for Si3N4/Si ICL interface formation.  相似文献   

7.
We compare 29Si magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectra from the two modifications of silicon nitride, α-Si3N4 and β-Si3N4, with that of a fully (29Si, 15N)-enriched sample 29Si315N4, as well as 15N NMR spectra of Si315N4 (having 29Si at natural abundance) and 29Si315N4. We show that the 15N NMR peak-widths from the latter are dominated by J(29Si–15N) through-bond interactions, leading to significantly broader NMR signals compared to those of Si315N4. By fitting calculated 29Si NMR spectra to experimental ones, we obtained an estimated coupling constant J(29Si–15N) of 20 Hz. We provide 29Si spin-lattice (T1) relaxation data for the 29Si315N4 sample and chemical shift anisotropy results for the 29Si site of β-Si3N4. Various factors potentially contributing to the 29Si and 15N NMR peak-widths of the various silicon nitride specimens are discussed. We also provide powder X-ray diffraction (XRD) and mass spectrometry data of the samples.  相似文献   

8.
This paper reports on measurements within the 5–300-K temperature interval of the thermal conductivity of Si3N4 and BN polycrystalline ceramic samples and Si3N4/BN fiber monoliths (FM) with different fiber arrangement architecture, [0], [90], and [0/90], with fibers arranged, accordingly, along and across the sample axis and the [0] and [90] layers stacked alternately. In the 3.5–300-K interval, the heat capacity at constant pressure, and at 77 K, the sound velocity have been measured in polycrystalline Si3N4 and BN samples and in Si3N4/BN [0] fiber monoliths. Our studies suggest that, with a high enough degree of confidence, but for some compositions—with minor assumptions, it can be maintained that, in the case of the Si3N4/BN fiber monoliths, one can use for calculation of their thermal conductivities and heat capacities within certain temperature intervals simple models considering mixtures of the Si3N4 and BN components with due account of their contributions to formation of the Si3N4/BN FM. It has been established that in the low-temperature domain (5–25 K), phonons in Si3N4/BN [0], [90], and [0/90] fiber monoliths scatter primarily from dislocations. This effect is not observed in ceramic Si3N4 and BN samples. The experimental data obtained on the thermal conductivity, heat capacity, and sound velocity have been used to calculate phonon mean free path lengths in polycrystalline Si3N4 and BN samples and the effective mean free path length in the Si3N4/BN [0] FM.  相似文献   

9.
The native point defects and mechanism of accommodating deviations from stoichiometry of Si2N2O crystal have been investigated using atomistic simulation techniques. This work firstly provides a reliable classical interatomic potential model derived from density functional theory calculations. The force-field parameters well reproduce the crystal structure, elastic stiffness, and dielectric constants of Si2N2O. It is expected that the force-field parameters are useful in future investigations on Si2N2O by molecular dynamic simulation. The calculated formation energies for native defects suggest that intrinsic disorder in stoichiometric Si2N2O is dominated by antisites and a degree of oxygen Frenkel defect may also exist in this system. In nonstoichiometric Si2N2O, the calculated reaction energies indicate that excess SiO2 or Si3N4 is most likely accommodated by the formation of antisite in the lattice. And we also find that SiO2 excess is energetically more favorable than Si3N4 surplus in Si2N2O.  相似文献   

10.
For studying the physical, chemical, and electronic properties of ultrasmall man-made structures, the major challenge is to fabricate highly uniform structures and control their positions on the nanometer length scale. Local oxidation of metals and semiconductors using a conductive-probe atomic force microscope (AFM) or other scanning probe microscopes in air at room temperature has emerged as a simple and universal method for this purpose. Here the uses of scanning probe oxidation of Si3N4 masks for performing nanolithography, nanomachining, and nanoscale epitaxial growth on silicon are reviewed. The three most unique features of this approach are presented: (1) exceptionally fast oxidation kinetics using silicon nitride masks (∼30 μm/s at 10 V for a ∼5-nm-thick film); (2) selective-area anisotropic etching of Si using a Si3N4 etch mask; and (3) selective-area chemical vapor deposition of Si using a SiO2/Si3N4 bilayer growth mask.  相似文献   

11.
Murat Durandurdu 《哲学杂志》2016,96(11):1110-1121
We report the electronic structure and topology of a heavily Si-doped amorphous aluminium nitride (Al37.5Si12.5N50) using ab initio simulations. The amorphous Al37.5Si12.5N50 system is found to be structurally similar to pure amorphous aluminium nitride. It has an average coordination number of about 3.9 and exhibits a small amount of Si–Si homopolar bonds. The formation of Si–Al bonds is not very favourable. Electronic structure calculations reveal that the Si doping has a negligible effect on the band gap width but causes delocalization of the valence band tail states and a shift of the Fermi level towards the conduction band. Thus, amorphous Al37.5Si12.5N50 alloys show n-type conductivity.  相似文献   

12.
The stresses at Si3N4/Si (1 0 0), (1 1 1) and (1 1 0) interfaces were measured by UV Raman spectroscopy with a 364 nm excitation laser whose penetration depth into the Si substrate was estimated to be 5 nm. The Si3N4 films were formed on Si (1 0 0), (1 1 1) and (1 1 0) using nitrogen-hydrogen (NH) radicals produced in microwave-excited high-density Xe/NH3 mixture plasma. The localized stress detected from Raman peak shift was compressive at the (1 0 0) interface, and tensile at the (1 1 1) and (1 1 0) interfaces. The results showed that stress had strong correlation with the total density of subnitrides at the Si3N4/Si interface, and also with the full-width at half-maximum (FWHM) of Si the 2p3/2 photoemission spectrum arising from the substrate. We believe that the localized stress affected subnitride formation because the amount of subnitride and the FWHM of Si 2p3/2 decreased while the interface stress shifted in the tensile direction.  相似文献   

13.
HfC/Si3N4 nanomultilayers with various thicknesses of Si3N4 layer have been prepared by reactive magnetron sputtering. Microstructure and mechanical properties of the multilayers have been investigated. The results show that amorphous Si3N4 is forced to crystallize and grow coherently with HfC when the Si3N4 layer thickness is less than 0.95 nm, correspondingly the multilayers exhibit strong columnar structure and achieve a significantly enhanced hardness with the maximum of 38.2 GPa. Further increasing Si3N4 layer thickness leads to the formation of amorphous Si3N4, which blocks the coherent growth of multilayer, and thus the hardness of multilayer decreases quickly.  相似文献   

14.
Low-pressure chemical vapour deposited Si3N4/nc-Si/Si3N4 layers prepared on Si substrates were characterized by spectroscopic ellipsometry. Model Dielectric Function (MDF) was applied to obtain the thickness and the dielectric spectra of the middle nc-Si layer. Sensitive effect of the deposition time was obtained on the MDF parameters. A comparison is presented between the studied samples and reference materials.  相似文献   

15.
The effect of the technology of preparation of silicon nitride in a low temperature gas discharge plasma upon the volt-ampere and volt-farad characteristics of metal-dielectricsemiconductor (MDS) structures (Al-Si3N4-Si-Al) is studied. It is shown that by using a heterogeneous Si3N4 formation reaction with ionic purification of the silicon surface, it is possible to obtain MDS structures with lower and more stable surface charge in comparison to similar structures in which the Si3N4 is grown by other methods (for example, gas transport reaction methods). The conductivity of the Si3N4 film is described approximately by the well known Frankel model, and its value is close to that of Si3N4 films prepared by other methods.  相似文献   

16.
The implantation of nitrogen into silicon to produce Si3N4 layers was investigated to find an alternative to CVD-Si3N4 layers used in ISOPLANAR-and LOCOS-technology. The technological properties of the implanted Si3N4 layers in respect to oxidation inhibition and etching are comparable or superior to CVD-Si3N4 layers. The implanted layers are more resistent against oxidation for nitrogen doses of 2.4×1017 cm−2 at 30keV. The etching behavior is comparable for both types of Si3N4-layers. In the implanted layers no pinholes are found and threre is no formation of a bird's beak, as is well known in the case of CVD-nitride.  相似文献   

17.
左都罗  李道火 《物理学报》1994,43(3):424-432
采用经表面优化的对称球形团簇作Si34,Si晶态量子点的模型,利用紧束缚近似和recursion方法研究了它们的电子结构,给出了导带底和价带顶位置随量子点尺寸的变化。得到了328原子Si34量子点、323原子Si量子点的中心原子局域态密度及平均态密度,并讨论了态密度和光谱结构的关系,中心原子局域态密度能较好地描述量子点的光谱,这一点得到了实验结果的证实。 关键词:  相似文献   

18.
采用射频磁控溅射方法制备单层AlN, Si3N4薄膜和不同调制周期的AlN/Si3N4纳米多层膜.采用X射线衍射仪、高分辨透射电子显微镜和纳米压痕仪对薄膜进行表征.结果发现,多层膜中Si3N4层的晶体结构和多层膜的硬度依赖于Si3N4层的厚度.当AlN层厚度为4.0nm、 Si3N4层厚度 关键词: 3N4纳米多层膜')" href="#">AlN/Si3N4纳米多层膜 外延生长 应力场 超硬效应  相似文献   

19.
TiN-containing amorphous Ti-Al-Si-N (nc-TiN/a-Si3N4 or a-AlN) nanocomposite coatings were deposited by using a modified closed field twin unbalanced magnetron sputtering system which is arc assisted and consists of two circles of targets, at a substrate temperature of 300 °C. XRD, XPS and High-resolution TEM experiments showed that the coatings contain TiN nanocrystals embedded in the amorphous Si3N4 or AlN matrix. The coatings exhibit good mechanical properties that are greatly influenced by the Si contents. The hardness of the Ti-Al-Si-N coatings deposited at Si targets currents of 5, 8, 10, and 12 A were 45, 47, 54 and 46 GPa, respectively. The high hardness of the deposited Ti-Al-Si-N coatings may be own to the plastic distortion and dislocation blocking by the nanocrystalline structure. On the other hand, the friction coefficient decreases monotonously with increasing Si contents. This result would be caused by tribo-chemical reactions, which often take place in many ceramics, e.g. Si3N4 reacts with H2O to produce SiO2 or Si(OH)2 tribolay-layer.  相似文献   

20.
Si3N4/Si表面Si生长过程的扫描隧道显微镜研究   总被引:1,自引:0,他引:1       下载免费PDF全文
汪雷  唐景昌  王学森 《物理学报》2001,50(3):517-522
利用原位扫描隧道显微镜和低能电子衍射分析了Si的纳米颗粒在Si3N4/Si(111)和Si3N4/Si(100)表面生长过程的结构演变.在生长早期T为350—1075K范围内,Si在两种衬底表面上都形成高密度的三维纳米团簇,这些团簇的大小均在几个纳米范围内,并且在高温退火时保持相当稳定的形状而不相互融合.当生长继续时,Si的晶体小面开始显现.在晶态的Si3N4(0001)/S 关键词: 氮化硅 扫描隧道显微镜 纳米颗粒  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号