首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CH3+HNCO反应机理的理论研究   总被引:4,自引:0,他引:4  
在6-311++G**基组水平上,采用UMP2方法对自由基CH3与HNCO反应机理进行了研究,全参数优化了反应通道上各驻点的几何构型.结果表明, 自由基CH3与HNCO分子间反应有三条反应通道,第一为CH3与HNCO分子间经过生成一个稳定化能为4.56 kJ•mol-1的含氢键的分子复合物M后,经过渡态TS生成另一个产物复合物M′,然后分解为甲烷和NCO自由基;第二是CH3与HNCO分子间通过生成稳定反式中间体trans-int,其经过渡态trans-ts分解成产物CH3NH和CO;第三是CH3与HNCO分子间通过生成稳定顺式中间体cis-int,其经过渡态cis-ts分解成产物CH3NH和CO.比较三条反应通道的反应活化能,表明CH3与HNCO反应较易生成CH4+NCO.  相似文献   

2.
氧负离子与乙烯自由基反应的理论研究   总被引:1,自引:0,他引:1  
王新磊  于锋  谢丹  刘世林  周晓国 《化学学报》2008,66(22):2499-2506
在G3MP2B3理论水平下研究了氧负离子与乙烯自由基的反应机理. 反应入口势能面的刚性扫描显示: 对于不同的初始反应取向, 体系存在3种不同的反应机理, 分别对应直接脱水、插入反应和直接键合成中间体通道. 其中, 通过插入反应形成的富能中间体[CH2=C—OH]-及键合中间体[CH2=CHO]-都可以进一步经异构化和解离生成其它各种可能产物, 如C2H-+H2O, OH-+CH2C和 +CO产物通道. 基于计算得到的反应势垒的相对高度, 直接脱水反应显然是该反应体系最主要的产物通道, 同时我们还结合Mulliken电荷布居分析研究了其中涉及的电子交换过程. 由此, 计算结果证实了以往OH-与C2H2反应的实验研究结果. 此外, 还对比了该反应体系、氧原子与乙烯自由基、氧负离子与乙烯分子三个反应的不同机理.  相似文献   

3.
用密度泛函理论B3LYP方法详细研究了 催化CO氧化反应的机理. 计算结果表明, O2分子在 和 上吸附能相差不大, 而CO分子在 上吸附要比在 上弱得多. 催化CO氧化反应共有四条反应途径. 最可能反应通道为CO插入 中的Ag—O键形成中间体[Ag—AgC(O—O)O]-, 然后直接分解形成产物CO2和 , 或另一分子CO进攻中间体[Ag—AgC(O—O)O]-形成两分子产物CO2和 . 在动力学上最难进行的反应通道为经历碳酸根双银中间体, 需要克服约0.24 eV的能垒. 催化CO氧化反应活性要高于 .  相似文献   

4.
采用BMC-CCSD//B3LYP/6-311G(d,p)方法对CH3SH+CN反应机理进行了详细的理论研究.反应中涉及的各稳定点的构型、振动频率和零点能在B3LYP/6-311G(d,p)水平下计算得到,计算结果表明,该反应存在两种反应机理,5条可能的反应通道.SN2机理由于能垒太高,与直接氢抽提机理相比可以忽略.该反应的最可行通道为CN中的C原子进攻SH中的H原子经由一个前期和一个后期分子络合物生成产物CH3S和HCN.计算得到的反应焓变与已有实验值非常吻合.  相似文献   

5.
用密度泛函理论B3LYP方法详细研究了Ag_2~-催化CO氧化反应的机理.计算结果表明,O2分子在Ag_2~-和Au_2~-上吸附能相差不大,而CO分子在Ag_2~-上吸附要比在Ag_2~-上弱得多.Ag_2~-催化CO氧化反应共有四条反应途径.最可能反应通道为CO插入Ag2O_2~-中的Ag—O键形成中间体[Ag—AgC(O—O)O]-,然后直接分解形成产物CO2和Ag2O-,或另一分子CO进攻中间体[Ag—AgC(O—O)O]-形成两分子产物CO2和Ag_2~-.在动力学上最难进行的反应通道为经历碳酸根双银中间体,需要克服约0.24eV的能垒.Ag_2~-催化CO氧化反应活性要高于Au_2~-.  相似文献   

6.
The bimolecular single collision reaction potential energy surface of CN radical with ketene (CH2CO) was investigated by means of B3LYP and QCISD(T) methods. The calculated results indicate that there are three possible channels in the reaction. The first is an attack reaction by the carbon atom of CN at the carbon atom of the methylene of CH2CO to form the intermediate NCCH2CO followed by a rupture reaction of the C-C bond combined with -CO group to the products CH2CN CO. The second is a direct addition reaction between CN and CH2CO to form the intermediate CH2C(O)CN followed by its isomerization into NCCH2CO via a CN-shift reaction, and subsequently, NCCH2CO dissociates into CH2CN CO through a CO-loss reaction. The last is a direct hydrogen abstraction reaction of CH2CO by CN radical. Because of the existence of a 15.44 kJ/mol reaction barrier and higher energy of reaction products, the path can be ruled out as an important channel in the reaction kinetics. The present theoretical computation results, which give an available suggestion on the reaction mechanism, are in good agreement with previous experimental studies.  相似文献   

7.
采用密度泛函理论的B3LYP方法, 在6- 311++G(d, p)基组水平上研究了CH3CHF自由基与HNCO的微观反应机理, 优化了反应过程中的反应物、中间体、过渡态和产物, 在QCISD(T)/6- 311++G(d, p)水平上计算体系在反应通道各驻点的能量. 振动分析结果和IRC分析结果证实了中间体和过渡态的真实性, 计算所得的成键临界点电荷密度变化也确认了该反应过程, 并找到了七条反应通道. 其中生成氟代烷基酰亚胺稳定分子的通道活化能垒最低, 在该反应体系中是与氢迁移平行竞争较易发生的一条反应通道.  相似文献   

8.
在CCSD(T)/6-311G(d,p)//B3LYP/6-311G(d,p)+ZPE水平上对反应·CHCHCH3+NO进行了计算, 并建立了其单重态的反应势能面. 在该反应中, 分别找到生成P1(CH3CHO+HCN), P2(CH3CHO+HNC), P3(CH3CN+HCHO), P4(CH3CCH+HNO)的4条产物通道, 其中·CHCHCH3和NO中的氮原子直接连接形成m1(trans-CH3CHCHNO), m1经过顺反异构形成m2(cis-CH3CHCHNO), m2再经过CCNO四元环合, 然后发生环解离, 最后生成产物P1(CH3CHO+HCN)是最可行的产物通道, 其余三条通道为次要产物通道. 该体系中生成P1的反应路径与同类体系·C2H3+NO的主要反应路径相类似, 两者的差别是前者为动力学可行的反应, 而后者为动力学不可行反应, 这使得·CHCHCH3+NO反应比·C2H3+NO反应更具有实际意义.  相似文献   

9.
在G3(MP2)//B3LYP/6-311 G(d,p)水平上,对CH3S自由基与CO气相反应的微观机理进行了理论研究.结果表明:该反应共存在3个反应通道,产物分别为CH3 OCS,CH2S HCO和CH2S HOC.由于形成产物CH3 OCS的活化势垒较低,因此为主要反应通道,这与实验观察到的结果是一致的.  相似文献   

10.
采用G3B3方法构建反式2-甲基-2-丁烯酸甲酯与O3反应体系以及后续Criegee自由基有、无水分子参与下异构化反应的势能面剖面.结果表明,反式2-甲基-2-丁烯酸甲酯与O3反应首先生成一个稳定的五元环中间体,此中间体按断键位置不同后续裂解反应存在两条路径,分别生成产物P1(CH3CHOO+CH3OC(O)C(CH3)O)和P2(CH3CHO+CH3OC(O)C(CH3)OO).利用经典过渡态理论(TST)并结合Wigner矫正模型计算了200-1200 K温度区间内标题反应的速率常数kTST/W.计算结果显示,294 K时,该反应速率常数为7.55×10-18cm3molecule-1s-1,与Bernard等对类似反应所测实验值非常接近.生成的Criegee自由基(CH3CHOO和CH3OC(O)C(CH3)OO)可分别与水分子发生α-加成及β-氢迁移反应,其中Criegee自由基与水的α-加成反应较其与水的β-氢迁移反应具有优势.另外与无水分子参与CH3CHOO和CH3OC(O)C(CH3)OO异构化反应相比,水分子的参与使得异构化反应较为容易进行.  相似文献   

11.
采用密度泛函理论方法在B3LYP/6-31G(d)水平上研究了Lewis碱稳定的硼代苯与一些亲二烯体的两种可能的Diels-Alder反应的微观机理和势能剖面, 并研究了反应的溶剂效应和取代基效应. 计算结果表明, 一部分反应以直接的近同步的协同方式进行, 而在另一部分反应中, 两个反应物分子先形成分子间复合物, 然后再经过协同的过渡态生成产物. 与气相中相比, 二氯甲烷溶剂使所研究的大部分反应的活化能垒有所增加. 在乙炔或乙烯分子中分别引入吸电子基团CO2Me或CN能显著降低反应的活化能垒. 形成一个C—B键的杂Diels-Alder反应都比相应的Diels-Alder反应在热力学和动力学上容易进行, 这与实验结果一致.  相似文献   

12.
C2H3和NO2反应势能面的理论研究   总被引:2,自引:7,他引:2  
在CCSD(T)/6—311G(d,p)//B3LYP/6—3llG(d,p)水平上给出了反应C2H3 NO2的详细势能面信息,并列出了中间体和过渡态的几何构型.通过深入分析反应路径及反应机理,得到5个能量可行的产物和6条反应通道,其中产物C2H3O NO的形成又有利,而产物CH2CO HNO则是次要产物,其他产物在通常条件下可以忽略.  相似文献   

13.
应用密度泛函理论(DFT)对CH3SS与OH自由基单重态反应机理进行了研究.在B3PW91/6-311+G(d,p)水平上优化了反应通道上各驻点(反应物、中间体、过渡态和产物)的几何构型,用内禀反应坐标(IRC)计算和频率分析方法对过渡态进行了验证.在QCISD(T)/6-311++G(d,p)水平上计算了各物种的单点能,并对总能量进行了零点能校正.研究结果表明,CH3SS与OH反应为多通道反应,有5条可能的反应通道.反应物首先通过不同的S—O键相互作用形成具有竞争反应机理的中间体IM1和IM2.再经过氢迁移、脱氢和裂解等机理得到主要产物P1(CH2SS+H2O),次要产物P2(CH2S+HSOH),P3(CH3SH+1SO)和P4(CH2SSO+H2),其中最低反应通道的势垒为174.6kJ.mol-1.  相似文献   

14.
用密度泛函理论(DFT)对金属Ir4 cluster催化丙烯Propene加氢反应的反应机理进行了理论研究. 在B3LYP理论水平下优化了反应通道上反应物、中间体、过渡态和产物各驻点物种的几何构型, 构建了该反应的基态势能面. 计算结果表明, Ir4 cluster催化丙烯加氢反应, 主要通过3条反应通道(c,d和e)进行. 主反应通道c 是H1原子先经过中间体1加成到丙烯的边端C上形成中间体3, 然后H2原子经过渡态TS3—5, 中间体5和过渡态TS5-P加成到中间C上生成产物P. c通道无论从动力学角度还是热力学角度都是最有利的; 反应通道d和e中的最高势垒和通道c上的相比差别不大, 具有一定的竞争性, 是次通道.  相似文献   

15.
用量子化学密度泛函方法详细研究了双原子铜阴离子Cu-2催化CO氧化形成CO2反应在气相中机理.在UB3LYP结合混合基组水平上,优化了所有反应物,中间体,过渡态和产物的几何构型,并进行了振动分析和波函数稳定性测试.计算结果表明最可能反应通道为CO和O2共吸附到Cu-2,然后形成四元环中间体,最后四元环中间体分解形成产物或另一分子CO进攻四元环中间体从而形成产物.第二个CO分子的协同作用比较小,能垒仅相差0.02eV.最难进行的反应通道为CO从Cu2O-2摘取氧原子形成CO2.Cu-2催化CO氧化反应活性比Au-2好.  相似文献   

16.
在CCSD(T)/B3LYP/6-311G(d,p)//B3LYP/6-311G(d,p)+ZPE水平上对反应HCNO+OH进行了计算,建立了反应势能面,对反应中涉及到的6个中间体和12个过渡态都做了详尽的分析.详细阐明了理论上可能得到的7种产物:P1为H2O+CNO,P2为HCO+HNO,P3为HO2+HCN,P4为HONH+CO,P5为H2CO+NO,P6为H2NO+CO和P7为H2O+OCN,以及形成这些产物的各种反应通道.其中最主要通道为由反应物形成反式初始复合物,再连续经过2次1,3-氢迁移最终形成产物HONH+CO,该通道是一条热力学可行的反应通道.并且从反应物、中间体和产物的相对能量来看,此反应是典型的消除型反应.另外,直接的氢提取反应也是比较重要的反应通道.  相似文献   

17.
采用密度泛函理论方法 M06-2X结合6-31+G(d,p)基组研究了CF3CH2CF2CH3与Cl原子反应的反应机理.计算获得了CF3CH2CF2CH3的两种可区分的稳定几何构象RC1和RC2以及与它们相对应的8条氢提取反应通道和2条取代反应通道.运用改进的正则变分过渡态理论(ICVT)并结合小曲率隧道效应校正(SCT),在M06-2X/6-31+G(d,p)水平上计算了各氢提取通道的速率常数,并由Boltzmann配分函数得到总包反应的速率常数kT(cm3.molecule-1.s-1).计算结果表明,体系的总反应速率常数与已有实验值相吻合,进而给出了该反应在200~1000 K温度区间内反应速率常数kT的三参数表达式kT=1.88×10-22T3.76.exp(-1780.69/T),并讨论了两种构象RC1和RC2对总反应的贡献及各构象中氢提取发生在—CH3或—CH2—基团上的位置选择性.此外,由于缺少相关反应物及产物自由基标准生成焓ΔHf,298 K的数据,利用等化学键法估算了在上述物种的标准生成焓.  相似文献   

18.
研究了溶剂分别为 THF, H2O/THF, CH3CN/THF以及ROH/THF (R=Me, Et, iso-Pr, tert-Bu)条件下TpRuH(PPh3)- (CH3CN) [Tp=hydrotris(pyrazolyl)borate]催化氢化苯乙烯生成乙基苯的反应, 发现向干燥THF体系中添加微量 H2O, CH3CN或ROH对催化反应都具有显著的促进作用. 催化机理研究表明, 小分子添加物首先取代TpRuH(PPh3)(CH3CN)中的PPh3配体形成中间体TpRuH(CH3CN)L (L=H2O, CH3CN或ROH), 降低空间位阻, CH3CN配体随后被苯乙烯取代生成中间体 TpRuH(H2C=CHPh)L; η2-苯乙烯插入Ru—H键后形成的Ru-烷基中间物与H2反应生成η2-H2配合物 TpRu(CH2CH2Ph)(H2)L或TpRu[CH(CH3)Ph](H2)L, 进而发生σ-复分解反应生成乙基苯完成催化循环.  相似文献   

19.
氧负离子自由基与苯的反应机理研究   总被引:1,自引:0,他引:1  
采用密度泛函理论研究了氧负离子自由基与苯分子的反应. 针对可能存在的抽氢反应、置换氢反应、生成水反应及羟基化反应通道, 在B3LYP/6-31+G(d, p)的水平上得到了反应物、产物、中间体复合物和过渡态的优化构型、振动频率以及能量, 证实了这个反应的多产物通道性质, 较完整地描述了反应的机理和产物生成途径. 并且利用G2MP2能量计算结果, 从反应途径的能垒高度定性说明了实验观测结果的合理性, 同时也解释了以往实验的矛盾结果.  相似文献   

20.
CH_3自由基和O(~3P)反应机理的量子化学研究   总被引:4,自引:0,他引:4  
李来才  邓萍  李德华  田安民 《化学学报》2002,60(7):1186-1191
用分子轨道从头计算MP2(full)方法和密度泛函理论(DFT)中的B3LYP方法 研究了CH_3自由基和三线态O原子反应的微观机理,优化得到了反应途径上的反应 物、过渡态、中间体和产物的几何构型,通过振动分析对过渡态和中间体构型进行 了确认,在G3不平上计算了能量,同时用经典过渡态理论对该反应的绝对速率常数 进行了理论计算。研究结果表明:CH_3自由基与O(~3P)反应有四条不同的放热反 应通道,主反应通道为IM1→TS1→CH_2O + H,同时反应可彻底裂解生成CO, H_2 及H。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号