首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A mathematical model was developed to simulate the polymerization kinetics of styrene oil-in-water microemulsions. Nucleation of particles in microemulsion droplets was assumed to account for the number of particles generated. It was found that the entry rate coefficient of radicals into microemulsion droplets is much smaller than the entry rate coefficient into monomer-swollen particles. All particles contain at most one growing radical. Various radical entry mechanisms were evaluated using the simulation. The possibility of flocculation between particles during the later stages of the polymerization and the high desorption rate of monomeric radicals was suggested by the simulation results. The likelihood of re-entry of desorbed radicals was den onstrated.  相似文献   

2.
In existing theories emulsion desiabilization is considered as the combined processes of irreversible flocculation and coalescence of dispersed droplets. This approach can be justified when the potential pit characterizing the energy of droplet interaction is sufficiently deep, i.e. excluding small droplet dimensions, strong electrosiatic repulsion and low electrolyte concentrations. For smaller droplet dimensions and stronger electrostatic repulsions the emulsion instability must be considered as a combined process of reversible flocculation and coalescence. In this paper a mathematical model that couples the kinetics of flocculation, coalescence and floe fragmentation is developed in order to quantify the kinetic instability of emulsions with charged submicron droplets. The characteristic limes for flocculation (Smoluchowski's time τc) for coalescence (coalescence time τc) and for disaggregation (doublet lifetimeτd) are considered model parameters. The mathematical model applies to the case when and τd<< τc, which corresponds to a situation with a small multiplet concentration compared to the concentration of doublets and a singlet-doublet quasi-equilibrium. It is established that at singlet-doublet quasi-equilibrium the rate of the decline in the total droplet concentration is described by second order kinetics in distinction to the exponential time dependence valid for coalescence at irreversible flocculation. The double disintegration reduces the entire coalescence rate, expressed as τsm/ τd. This reduction is very large at small values of Td. The mathematical model presented can hased on the spontaneous disintegration of doublets predict changes in emulsion stability for model systems and also for technologically important emulsions.  相似文献   

3.
The influence of droplet flocculation on the creaming stability of monodisperse n-hexadecane oil-in-water emulsions was studied. The creaming velocity of emulsions with different droplet radii (0.43 and 0.86 μm), droplet concentrations (1-67 vol%), and sodium dodecyl sulfate (SDS) concentrations (7-80 mM) were measured. Depletion flocculation was observed in the emulsions when the aqueous phase SDS concentration exceeded a particular level ( approximately 40 mM for 0.43-μm droplets and approximately 15 mM for 0.86-μm droplets). Creaming was monitored by measuring the back-scattered light from an emulsion as a function of its height. The creaming velocity increased with increasing flocculation and decreased with increasing droplet concentration. These results have important implications for the formulation of emulsion-based materials. Copyright 2000 Academic Press.  相似文献   

4.
The influence of sodium dodecyl sulfate (SDS) on the flocculation of droplets in 20 wt.% soybean oil-in-water emulsions stabilized by whey protein isolate (WPI) was investigated by light scattering, rheology and creaming measurements. The SDS concentrations used were low enough to prevent depletion flocculation by surfactant micelles and extensive protein displacement. In the absence of SDS, emulsions were prone to droplet flocculation near the isoelectric point of the proteins (4<pH<6), but were stable at a higher and lower pH. Flocculation led to an increase in emulsion viscosity, pronounced shear thinning behavior and accelerated creaming. When the surfactant-to-protein molar ratio was increased from 0 to 10, the emulsion instability range shifted to lower pH values due to binding of the negatively charged SDS molecules to the droplets. Our results indicate that the physicochemical properties of protein-stabilized emulsions can be modified by utilizing surfactant–protein interactions.  相似文献   

5.
Mayonnaise is one of the most well-known dressings in the world and has properly found its impossibility to apply thermal processing, the high level of cholesterol and some consumers’ allergy to egg. In this study, the production of egg- free mayonnaise in model system has been investigated with the emphasis on flocculation enhancement in the system. Flocculation of emulsion droplets can have beneficial or harmful effect on food quality depending on product nature. In this study, influence of flocculation inducing on the stability, microscopic structure, zeta potential, droplet size and rheological properties of egg-free mayonnaise system were evaluated. Xanthan (XG), pectin (PE) and modified starch (MS) biopolymers mixed at different concentrations were used as flocculation inducer in emulsion system. XG-MS and PE-MS mixed polymers created depletion flocculation and reduced the speed of the oil droplets movement in the product and thus increased emulsion stability. In addition, an increase of all gum concentration caused an increment in the stability, consistency coefficient and heat stability values. Depending on the desirable level of xanthan gum and pectin gum for creating depletion flocculation, production of egg-free mayonnaise with properties closely matching those of commercial ones with egg is possible.  相似文献   

6.
The extent and kinetics of droplet flocculation in emulsions was studied using ultrasonic attenuation spectroscopy. Flocculation in 10 wt.% soybean oil-in-water emulsions, stabilized by whey protein isolate (0.75 wt.%), was controlled by adjusting the pH (between 3 and 7) to alter the electrostatic interactions between the droplets. Droplet flocculation was then monitored by measuring the ultrasonic attenuation spectra (1–150 MHz) and by using laser light scattering. Extensive droplet flocculation was observed in the emulsions around the isoelectric point of the proteins (pH 3.5–5.5). Flocculation caused an appreciable change in the ultrasonic attenuation spectra, which was in good qualitative agreement with a theory recently developed to describe the ultrasonic properties of flocculated emulsions. Our results indicate that ultrasonic spectroscopy is a powerful tool for monitoring both the extent and kinetics of flocculation in concentrated emulsions in situ.  相似文献   

7.
The influence of protein concentration and order of addition relative to homogenization (before or after) on the extent of droplet flocculation in heat-treated oil-in-water emulsions stabilized by a globular protein were examined using laser diffraction. n-Hexadecane (10 wt%) oil-in-water emulsions (pH 7, 150 mM NaCl) stabilized by beta-lactoglobulin (beta-Lg) were prepared by three methods: (1) 4 mg/mL beta-Lg added before homogenization; (2) 4 mg/mL beta-Lg added before homogenization and 6 mg/mL beta-Lg added after homogenization; (3) 10 mg/mL beta-Lg added before homogenization. The emulsions were then subjected to various isothermal heat treatments (30-95 degrees C for 20 min), with the 150 mM NaCl being added either before or after heating. Emulsion 1 contained little nonadsorbed protein and exhibited extensive droplet aggregation at all temperatures, which was attributed to the fact that the droplets had a high surface hydrophobicity, e.g., due to exposed oil or extensive protein surface denaturation. Emulsions 2 and 3 contained a significant fraction of nonadsorbed beta-Lg. When the NaCl was added before heating, these emulsions were relatively stable to droplet flocculation below a critical holding temperature (75 and 60 degrees C, respectively) but showed extensive flocculation above this temperature. The stability at low temperatures was attributed to the droplets having a relatively low surface hydrophobicity, e.g., due to complete saturation of the droplet surface with protein or due to more limited surface denaturation. The instability at high temperatures was attributed to thermal denaturation of the adsorbed and nonadsorbed proteins leading to increased hydrophobic interactions between droplets. When the salt was added to Emulsions 2 and 3 after heating, little droplet flocculation was observed at high temperatures, which was attributed to the dominance of intra-membrane over inter-membrane protein-protein interactions. Our data suggests that protein concentration and order of addition have a strong influence on the flocculation stability of protein-stabilized emulsions, which has important implications for the formulation and production of many emulsion-based products.  相似文献   

8.
Highly-charged droplets, as formed by an electrospray process, are known to undergo asymmetric fission to form smaller droplets. We have observed a chemical and physical separation phenomenon that occurs in the droplet break-up process and is related to a compound's surface activity in solution. Two experimental approaches demonstrated that the smaller satellite droplets and the progeny droplets generated by the spray formation and asymmetric fission processes to be surfactant-enriched. These smaller droplets were also effectively separated from the larger primary and residual droplets because of their smaller inertia and high surface charge density, and a region attributed to the initially formed smaller satellite droplets was found to be strikingly confined in a narrow periphery region of the electrospray. The phenomenon may have utility for chemical separations and have significant implications for the sensitivity and selectivity of electrospray ionization-mass spectrometry.  相似文献   

9.
The rennet-induced aggregation of skim milk recombined with whey protein-stabilized emulsion droplets was studied using diffusing wave spectroscopy (DSW) and small deformation rheology. The effect of different volume fractions of casein micelles and fat globules was investigated by observing changes in turbidity (1/l*), apparent radius, elastic modulus and mean square displacement (MSD), in addition to confocal imaging of the gels.Skim milk containing different concentration of casein micelles showed comparable light-scattering profiles; a higher volume fraction of caseins led to the development of more elastic gels.By following the development of 1/l* in recombined milks, it was possible to describe the behaviour of the fat globules during the initial stages of rennet coagulation. Increasing the volume fraction of fat globules showed a significant increase in gel elasticity, caused by flocculation of the oil droplets. The presence of flocculated oil globules within the gel structure was confirmed by confocal microscopy observations. Moreover, a lower degree of κ-casein hydrolysis was needed to initiate casein micelles aggregation in milk containing whey protein-stabilized oil droplets compared to skim milk.This study for the first time clearly describes the impact of a mixture of casein micelles and whey protein-stabilized fat globules on the pre-gelation stages of rennet coagulation, and further highlights the importance of the flocculation state of the emulsion droplets in affecting the structure formation of the gel.  相似文献   

10.
The effects of added unmodified amylopectin starch, modified amylopectin starch and amylose starch on the formation and properties of emulsions (4 wt.% corn oil) made with an extensively hydrolysed commercial whey protein (WPH) product under a range of conditions were examined. The rate of coalescence was calculated based on the changes in the droplet size of the emulsions during storage at 20 degrees C. The rates of creaming and coalescence in emulsions containing amylopectin starches were enhanced with increasing concentration of the starches during storage for up to 7 days. At a given starch concentration, the rate of coalescence was higher in the emulsions containing modified amylopectin starch than in those containing unmodified amylopectin starch, whereas it was lowest in the emulsions containing amylose starch. All emulsions containing unmodified and modified amylopectin starches showed flocculation of oil droplets by a depletion mechanism. However, flocculation was not observed in the emulsions containing amylose starch. The extent of flocculation was considered to correlate with the rate of coalescence of oil droplets. The different rates of coalescence could be explained on the basis of the strength of the depletion potential, which was dependent on the molecular weight and the radius of gyration of the starches. At high levels of starch addition (>1.5%), the rate of coalescence decreased gradually, apparently because of the high viscosity of the aqueous phase caused by the starch.  相似文献   

11.
The creaming and rheology of oil-in-water emulsions (30 vol% n-tetradecane, pH 6.8) stabilized by a mixture of commercial sodium caseinate and the non-ionic emulsifier polyoxyethylene sorbitan monolaurate (Tween 20) has been investigated at 21 degrees C. The presence of sufficient Tween 20 to displace most of the protein from the emulsion droplet surface leads to greatly enhanced emulsion creaming (and strongly non-Newtonian rheology) which is indicative of depletion flocculation by nonadsorbed surface-active material (protein and emulsifier). In emulsions containing a constant amount of surface-active material, the replacement of a very small fraction of Tween 20 by caseinate in a stable pure Tween 20 emulsion leads to enhanced creaming for a small fraction of the droplets, and this fraction increases with increasing replacement of emulsifier by protein. This behavior is probably due to depletion flocculation, although an alternative bridging mechanism is also a possibility. The overall stability of these sets of emulsions can be represented in terms of a global stability diagram containing regions of bridging flocculation and coalescence (low content of surface-active material), stability (intermediate content), and depletion flocculation (high content). Copyright 1999 Academic Press.  相似文献   

12.
The stability of poly(dimethylsiloxane) (PDMS) oil-in-water emulsions has been investigated in the presence of added NaCl as well as in the presence of added surfactant. The emulsions were prepared using a combination of nonionic (C(x)E(y), x and y represent the number of methylene (C) and ethylene oxide (E) groups, respectively) and cationic (quarternary alkylammonium) surfactants. The droplets were observed to exhibit weak flocculation in the presence of high NaCl concentration (1 M). Phase separation and optical microscopic observations revealed that the principal mechanism for emulsion destabilization at high salt concentration was coalescence, which was accelerated at elevated temperature (50 degrees C). The effective coalescence rate for diluted emulsions was investigated using photon correlation spectroscopy. The small effective Hamaker constant for PDMS is the primary reason for the slow rate of coalescence observed for the emulsions at neutral pH in the presence of NaCl. The stability of PDMS emulsions to flocculation is qualitatively similar to that reported for low Hamaker constant dispersions (e.g., microgel particles). Addition of cationic surfactants (cetyltrimethylammonium chloride and dodecyl dimethylbenzylammonium chloride) to the negatively charged droplets after preparation was shown to decrease the emulsion stability once the surfactant concentration exceeded the CMC. Electrophoretic mobility measurements showed that added cationic surfactant changed the sign of the droplet charge from negative to positive at concentrations well below the CMC. Charged micelles of the same sign as the droplets are electrostatically excluded from close approach to the droplet surface within a distance (varepsilon) which results in depletion flocculation. Copyright 2000 Academic Press.  相似文献   

13.
Novel oil‐in‐water (O/W) emulsions are prepared which are stabilised by a cationic surfactant in combination with similarly charged alumina nanoparticles at concentrations as low as 10?5 m and 10?4 wt %, respectively. The surfactant molecules adsorb at the oil‐water interface to reduce the interfacial tension and endow droplets with charge ensuring electrical repulsion between them, whereas the charged particles are dispersed in the aqueous films between droplets retaining thick lamellae, reducing water drainage and hindering flocculation and coalescence of droplets. This stabilization mechanism is universal as it occurs with different oils (alkanes, aromatic hydrocarbons and triglycerides) and in mixtures of anionic surfactant and negatively charged nanoparticles. Further, such emulsions can be switched between stable and unstable by addition of an equimolar amount of oppositely charged surfactant which forms ion pairs with the original surfactant destroying the repulsion between droplets.  相似文献   

14.
The influence of electrostatically-induced heteroaggregation of oppositely charged lipid droplets on the rheology and stability of emulsions has been studied. 20 wt.% oil-in-water emulsions (pH 6) containing oppositely charged droplets were fabricated by mixing cationic lactoferrin-coated lipid droplets with anionic β-lactoglobulin-coated lipid droplets. Emulsions containing mixtures of droplets with different charges (positive or negative) and sizes (large or small) were prepared, and then their overall particle characteristics (ζ-potential and size) and rheology were measured. Emulsions formed by mixing positive droplets and negative droplets that were both relatively small (d(43) ≈ 0.3 μm) exhibited extensive flocculation and had paste-like properties at intermediate positive-to-negative particle ratios. On the other hand, emulsions formed by mixing positive droplets and negative droplets that were both relatively large (d(43) ≈ 3 μm) exhibited little aggregation and had relatively low viscosities at all particle ratios. Emulsions with small negative droplets and large positive droplets (or vice versa), exhibited some aggregation and viscosity enhancement at intermediate particle ratios. The presence of relatively high levels of protein in the aqueous phase of mixed emulsions reduced the level of droplet aggregation and viscosity enhancement observed, which was attributed to the ability of protein molecules to bind to droplet surfaces and neutralize their charges. Electrostatically-induced heteroaggregation of lipid droplets may be a useful means of controlling the physicochemical properties of emulsion-based products in the food, personal care, pharmaceutical and cosmetic industries.  相似文献   

15.
The influence of thermal processing on droplet flocculation in oil-in-water emulsions stabilized by either beta-lactoglobulin (primary emulsions) or beta-lactoglobulin-iota-carrageenan (secondary emulsions) at pH 6 has been investigated. In the absence of salt, the zeta-potential of the primary emulsion was less negative (-40 mV) than that of the secondary emulsion (-55 mV) due to adsorption of anionic iota-carrageenan to the anionic beta-Lg-coated droplet surfaces. The zeta-potential and mean diameter (d(43) approximately 0.3 microm) of droplets in primary and secondary emulsions did not change after storage at temperatures ranging from 30 to 90 degrees C. In the presence of 150 mM NaCl, the zeta-potential of the primary emulsion was much less negative (-27 mV) than that of the secondary emulsion (-50 mV), suggesting that the latter was less influenced by electrostatic screening effects. The zeta-potential of the primary emulsions did not change after storage at elevated temperatures (30-90 degrees C). The zeta-potential of the secondary emulsions became less negative, and the aqueous phase iota-carrageenan concentration increased at storage temperatures exceeding 50 degrees C, indicating iota-carrageenan desorbed from the beta-Lg-coated droplets. In the primary emulsions, appreciable droplet flocculation (d(43) approximately 8 microm) occurred at temperatures below the thermal denaturation temperature (T(m)) of the adsorbed proteins due to surface denaturation, while more extensive flocculation (d(43) > 20 microm) occurred above T(m) due to thermal denaturation. In the secondary emulsions, the extent of droplet flocculation below T(m) was reduced substantially (d(43) approximately 0.8 microm), which was attributed to the ability of adsorbed carrageenan to increase droplet-droplet repulsion. However, extensive droplet flocculation was observed above T(m) because carrageenan desorbed from the droplet surfaces. Differential scanning calorimetry showed that iota-carrageenan and beta-Lg interacted strongly in aqueous solutions containing 0 mM NaCl, but not in those containing 150 mM NaCl, presumably because salt weakened the electrostatic attraction between the molecules.  相似文献   

16.
The critical flocculation density (CFD), that is, the CO(2) density below which flocculation occurs, was studied for dilute water-in-CO(2) (W/C) miniemulsions stabilized with poly(1,1-dihydroperfluorooctyl methacrylate)-b-poly(ethylene oxide) (PFOMA-b-PEO) surfactants. The CFD, which was measured by turbidimetry, decreased as the PFOMA molecular weight was increased, the average droplet size was decreased, the surfactant loading was increased, and the temperature was increased. A simple model, which addressed both the van der Waals attraction between droplets and osmotic solvent-tail interactions, was in good qualitative agreement with the experimentally observed trends for the CFD and predicted a decrease in emulsion stability as the CO(2) density was lowered toward the theta density for PFOMA in bulk CO(2).  相似文献   

17.
We present a time-resolved study of the evaporation in air of minuscule sessile droplets deposited by nanodispensing techniques. Highly sensitive nanomechanical resonators are designed to monitor in time the mass variation of evaporating liquid droplets. The precision of the measurement setup enables the study of droplets with diameters in the 1 mum range, which correspond to volumes of femtoliters and smaller, 9 orders of magnitude smaller than most of presently published data. Experimental data are compared with macroscopic models.  相似文献   

18.
19.
We describe the quantitative interrelation between the thermodynamic parameters of caseinate submicelles in the presence of calcium ions (0-14 mM) in aqueous medium and the capacity of the protein to induce depletion flocculation in oil-in-water emulsions at pH 7.0 and ionic strength 0.05 mol dm(-3). Measurements have been made by static and dynamic multiangle laser light scattering of the weight-average molecular weight, the radius of gyration, the hydrodynamic radius, and the second virial coefficient of caseinate submicelles in aqueous solution. Successive thermodynamic approximations with and without consideration of correlations between caseinate submicelles have been used to calculate the osmotic pressure in caseinate aqueous solutions and the free energy of the depletion interaction between droplets in oil-in-water emulsions stabilized by caseinate. Numerical results from both thermodynamic approximations are in reasonably good agreement with experiment, predicting a pronounced decrease in the strength of the depletion attraction at concentrations of Ca(2+) in the range 4-8 mM (with a minimum value at 8 mM). This correlates well with the great enhancement of stability of these emulsions with respect to flocculation in comparison with systems having no added ionic calcium and emulsions with lower (2 mM) or higher (10 mM) Ca(2+) contents. Nevertheless, the allowance for interactive correlations between caseinate submicelles seems to lead to a better prediction of emulsion flocculation on a qualitative level over the whole range of Ca(2+) concentrations studied (2-14 mM). The calculated pronounced decrease in depletion interaction strength is attributable to marked changes in weight-average molecular weight and mean size of aggregates, and to more positive values of the second virial coefficient of caseinate submicelles with increasing Ca(2+) content. Finally, we discuss the part played by the electrical charge on the protein in determining the overall strength of the flocculation-inducing attractive interactions between droplets. Copyright 2001 Academic Press.  相似文献   

20.
A high volume fraction silica stabilized w/o emulsion with small droplet size ( approximately 3 μm) has been prepared using a commercially available hydrophobic silica. Addition of hydroxypropyl cellulose to the dispersed aqueous phase was found to improve the monodispersity of the emulsion by suppressing the production of larger droplets. The droplet size distribution showed complex behavior as the silica concentration was varied, which was explained using a simple kinetic argument. The effect of varying the acidity and ionic strength of the internal water phase was investigated. It was found that the presence of strong acid or strong alkali in the internal aqueous phase increased the gelation of the emulsions by promoting flocculation. This could be explained by acid- and alkali-catalyzed cleavage of surface siloxane groups increasing the number of surface silanol groups. If emulsions of strong acid and strong alkali were mixed, substantial additional gelation (again caused by flocculation) occurred. A possible explanation, preferred by the author, was an electrostatic one involving the interaction of dipoles in close proximity in the flocculated emulsion. Copyright 1999 Academic Press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号