首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on a facile immunoassay for porcine circovirus type 2 (PCV2) based on surface enhanced Raman scattering (SERS) using multi-branched gold nanoparticles (mb-AuNPs) as substrates. The mb-AuNPs in the immunosensor act as Raman reporters and were prepared via Tris base-induced reduction and subsequent reaction with p-mercaptobenzoic acid (pMBA). They possess good stability and high SERS activity. Subsequently, the modified mb-AuNPs were covalently conjugated to the monoclonal antibody (McAb) against the PCV2 cap protein to form SERS immuno nanoprobes. These were captured in a microtiterplate via a immunoreaction in the presence of target antigens. The effects of antibody concentration, reaction time and temperature on the sensitivity of the immunoassay were investigated. Under optimized assay conditions, the Raman signal intensity at 1,076 cm?1 increases logarithmically with the concentrations of PCV2 in the concentration ranging from 8?×?102 to 8?×?106 copies per mL. The limit of detection is 8?×?102 copies per mL. Compared to conventional detecting methods such as those based on PCR, the method presented here is rapid, facile and very sensitive.
Figure
A simple and novel approach to detect porcine circovirus type 2 using surface enhanced Raman scattering (SERS) of multi-branched gold nanoparticles is demonstrated, it has a higher sensitivity than polymerase chain reaction and ELISA.  相似文献   

2.
This letter reports the first observation of both surface enhanced Raman scattering (SERS) and surface enhanced resonance Raman scattering (SERRS) from the transition metal complex tris(2,2′-bipyridine)ruthenium (II), Ru(bpy)32+, adsorbed on a silver electrode from acetonitrile (ACN). The assignment of these spectra as valid examples of SERS and SERRS in a non-aqueous environment is based on the following criteria: (1) in situ demonstration of monolayer surface coverage of Ru(bpy)32+ using double potential step chronocoulometry (DPSCC); (2) the Raman signals are most intense after surface roughening by anodization; (3) the Raman spectra are potential dependent in the non-faradaic potential region; (4) the measured enhancement factors are greater ilian 106; (5) the surface spectra are frequency shifted relative to their bulk counterpart; and (6) several other molecules also exhibit non-aqueous SERS and SERRS behavior. These results are highly significant in that generality of surface enhanced Raman spectroscopy has been extended into the rich domain of nonaqueous electrochemistry.  相似文献   

3.
Liu X  Huan S  Bu Y  Shen G  Yu R 《Talanta》2008,75(3):797-803
A novel immunoassay based on surface-enhanced Raman scattering (SERS) has been developed. The method exploits the SERS-derived signal from reporter molecules (crystal violet, CV) encapsulated in antibody-modified liposome particles. The antigen is firstly captured by the primary antibody immobilized in microwell plates and then sandwiched by secondary antibody-modified liposome. The CV molecules are released from the liposome and transferred to specially designed substrate of gold nanosphere arrays with sub-10-nm gaps. The concentration of the antigen is indirectly read out by the SERS intensity of the CVs. The substrate used could substantially improve the sensitivity and reproducibility of SERS measurement. The SERS intensity responses are linearly correlated to logarithm of antigen concentration in the range of 1.0 x 10(-8) to 1.0 x 10(-4) gm L(-1) with a detection limit of 8 ng mL(-1). To our knowledge, this is the first report describing liposome-mediated enhancement of the sensitivity in immunoassay based on surface-enhanced Raman scattering. Experimental results show that the proposed method illustrates a potential prospect of applications in immunoassay.  相似文献   

4.
《Analytical letters》2012,45(14):2245-2257
Uniform phenolic resin microspheres were prepared by the polycondensation of 3-aminophenol and formaldehyde. On the surface of the 3-aminophenol resin microspheres, silver nanoparticles were synthesized in situ and immobilized by simple heating. The composite was employed as a substrate for surface-enhanced Raman scattering (SERS). The SERS enhancement factor was evaluated using 4-mercaptobenzoic acid and Nile blue A as signal molecules. A highly sensitive SERS immunoassay that combined labeled antibody conjugated silver nanoparticle modified 3-aminophenol resin microspheres and coating antibody conjugated magnetic nanoparticles was fabricated to determine carcinoembryonic antigen. A linear relationship was obtained between the Raman intensity and the concentration of carcinoembryonic antigen. The limit of detection was 1.2 picograms per milliliter at a signal-to-noise ratio of three. This is believed to be the first report of a SERS immunoassay using silver nanoparticle modified 3-aminophenol resin microspheres as substrates.  相似文献   

5.
Luo  Zhihui  Li  Wentao  Lu  Donglian  Chen  Kun  He  Qigai  Han  Heyou  Zou  Mingqiang 《Mikrochimica acta》2013,180(15):1501-1507

We report on a facile immunoassay for porcine circovirus type 2 (PCV2) based on surface enhanced Raman scattering (SERS) using multi-branched gold nanoparticles (mb-AuNPs) as substrates. The mb-AuNPs in the immunosensor act as Raman reporters and were prepared via Tris base-induced reduction and subsequent reaction with p-mercaptobenzoic acid (pMBA). They possess good stability and high SERS activity. Subsequently, the modified mb-AuNPs were covalently conjugated to the monoclonal antibody (McAb) against the PCV2 cap protein to form SERS immuno nanoprobes. These were captured in a microtiterplate via a immunoreaction in the presence of target antigens. The effects of antibody concentration, reaction time and temperature on the sensitivity of the immunoassay were investigated. Under optimized assay conditions, the Raman signal intensity at 1,076 cm−1 increases logarithmically with the concentrations of PCV2 in the concentration ranging from 8 × 102 to 8 × 106 copies per mL. The limit of detection is 8 × 102 copies per mL. Compared to conventional detecting methods such as those based on PCR, the method presented here is rapid, facile and very sensitive.

  相似文献   

6.
SERS标记的金纳米棒探针用于免疫检测   总被引:1,自引:0,他引:1  
郭红燕  芦玲慧  吴超  潘建高  胡家文 《化学学报》2009,67(14):1603-1608
报道了基于金纳米棒表面增强拉曼散射(SERS)的免疫检测. 将拉曼活性分子对巯基苯甲酸吸附于金纳米棒表面, 制备出SERS标记的金纳米棒探针. 该探针和蛋白抗体结合形成SERS标记抗体. 通过SERS标记抗体、待测抗原和俘获抗体(固体基底上修饰的抗体, 即俘获抗体)之间的免疫应答反应, 将金纳米棒探针组装到固体基底上, 形成SERS标记抗体-抗原-俘获抗体 “三明治”夹心复合体. 待测抗原浓度越大, 固体基底上俘获的金纳米棒探针的数目越多, 从而可通过SERS信号的强弱来检测待测抗原的浓度. 由于金纳米棒的表面等离子体共振(SPR)峰位置可以在较宽的范围内调控, 可通过激发光和SPR的耦合来提高SERS信号, 从而提高免疫检测的灵敏度. 单组分抗原可检出的浓度范围高于1×10-8 mg/mL.  相似文献   

7.
This communication presents a new pathway for the more precise quantification of surface-enhanced Raman scattering (SERS) enhancement factor via deducing resonance Raman scattering (RRS) effect from surface-enhanced resonance Raman scattering (SERRS). To achieve this, a self-assembled monolayer of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) is formed on plasmon inactive glassy carbon (GC) and plasmon active GC/AuNP surface. The surfaces are subsequently used as common probes for electrochemical and Raman (RRS and SERRS) studies. The most crucial parameters required for the quantification of SERS substrate enhancement factor (SSEF) such as real surface area of GC/AuNPs substarte and the number of 4α-CoIITAPc molecules contributing to RRS (on GC) and SERRS (on GC/AuNPs) are precisely estimated by cyclic voltammetry experiments. The present approach of SSEF quantification can be applied to varieties of surfaces by choosing an appropriate laser line and probe molecule for each surface.  相似文献   

8.
Zhang D  Li W  Zhang J  Tang W  Qian C  Feng M  Chu Q  Ye J 《Analytica chimica acta》2011,697(1-2):61-66
In this report, we present a novel approach to detect clenbuterol based on competitive surface-enhanced Raman scattering (SERS) immunoassay. Herein, a SERS nanoprobe that relies on gold nanoparticle (GNP) is labeled by 4,4'-dipyridyl (DP) and clenbuterol antibody, respectively. The detection of clenbuterol is carried out by competitive binding between free clenbuterol and clenbuterol-BSA fastened on the substrate with their antibody labeled on SERS nanoprobes. The present method allows us to detect clenbuterol over a much wider concentration range (0.1-100 pg mL(-1)) with a lower limit of detection (ca. 0.1 pg mL(-1)) than the conventional methods. Furthermore, by the use of this new competitive SERS immunoassay, the clenbuterol-BSA (antigen) is chosen to fasten on the substrate instead of the clenbuterol antibody, which could reduce the cost of the assay. Results demonstrate that the proposed method has the wide potential applications in food safety and agonist control.  相似文献   

9.
A highly selective and sensitive surface-enhanced Raman scattering (SERS)-based immunoassay for the multiple detection of proteins has been developed. The proposed core shell magnetic gold (Au) nanoparticles allow for successful protein separation and high SERS enhancement for protein detection. To selectively detect a specific protein in a mixed protein solution, we employed the sandwich type SERS immunoassay with core shell magnetic Au nanoparticles utilizing specific antigen–antibody interactions. Based on this proposed SERS immunoassay, we can successfully detect proteins in very low concentrations (∼800 ag/mL of mouse IgG and ∼5 fg/mL of human IgG) with high reproducibility. Magnetically assisted protein separation and detection by this proposed SERS immunoassay would provide great potential for effective and sensitive multiple protein detection. This technique allows for the straightforward SERS-based bioassays for quantitative protein detections.  相似文献   

10.
Surface-enhanced Raman scattering (SERS) of dipping films of azobenzene-containing long-chain fatty acids, nAmH (n=8, 12, m=3, 5), on silver mirrors measured with a wide range of excitation wavelengths in the 457.9-1064 nm region is reported. The obtained Raman spectra show great SERS effect even with the 1064 nm excitation, and the excitation with 457.9, 476.5, and 488.0 nm gives surface-enhanced resonance Raman scattering (SERRS) due to the resonance effect of the symmetry-forbidden n-pi* transition of the azo group. Of particular note in the present study is that the SERS spectra with the excitation in the 532-1064 nm region yield Raman bands whose frequencies are almost identical to those bands in Raman spectra of nAmH in solid state while the SERRS spectra with the excitation in the 457.9-514.5 nm region show not only a set of bands which correspond to those of nAmH in the solid state but also a set of bands whose frequencies show a significant shift from those of the bands of nAmH in the solid state. These observations lead us to conclude that there are two kinds of molecular aggregates in the dipping films of azobenzene-containing long-chain fatty acid in which azobenzene moieties are condensed to form small bundles.  相似文献   

11.
Wu ZS  Zhou GZ  Jiang JH  Shen GL  Yu RQ 《Talanta》2006,70(3):533-539
It is difficult to detect glucose by surface-enhanced Raman spectroscopy (SERS) due to the small normal Raman cross-section and the weak adsorption of glucose molecules on the surface of noble metal. A simple and fast method is proposed in this paper for the detection of glucose based on SERS signal of the enzyme reaction product and the difficulties have been circumvented. Gold colloids modified by horseradish peroxidase and glucose oxidase (HRP/GOD-gold colloids) are added to the mixture of o-phenylenediamine and glucose, and the resulting solution is allowed to react at room temperature for 5 min. Azoaniline, an azo compound with strong Raman scattering, is generated and the Raman scattering of this reaction product is enhanced when adsorbed on gold colloids. The intensity of the SERS spectrum is used for assessment of glucose content. The dynamic signal range provided by this analytical system is 0.50-32 mM, which covers the normal clinical range for glucose in blood from 3.5 to 6.1 mM. The detection limit is about 0.46 mM. The interference effect of several proteins on glucose detection is also investigated and has shown to have no effect on the measurement of glucose by the described technique.  相似文献   

12.
黄曲霉素B1在银团簇表面吸附的表面增强拉曼光谱   总被引:2,自引:0,他引:2  
采用密度泛函理论(DFT)的B3LYP方法和6-311g(d, p)(C, H, O)/LanL2DZ(Ag)基组, 优化得到黄曲霉素分子AFB1与Ag小团簇形成的复合物AFB1-Agn (n=2, 4, 6)的稳定结构, 并计算了三种复合物的表面增强拉曼光谱(SERS)和预共振拉曼光谱(SERRS), 与实验结果相一致. 计算结果显示: 三种复合物表面增强拉曼光谱中C=O伸缩振动模的增强因子约为102-103, 是由于极化率改变引起的静化学增强. 根据含时密度泛函理论(TDDFT)方法计算得到的吸收光谱, 分别选择407.5、446.2和411.2 nm作为入射光, 计算三种复合物的共振拉曼光谱, 发现在SERRS光谱中, Ag―O伸缩振动的增强因子达到104量级, 主要是由电荷转移产生的共振增强引起的.  相似文献   

13.
We demonstrate in this work that 2-μm-sized Ag (μAg) powders can be used as a core material for constructing biomolecular sensing/recognition units operating via surface-enhanced resonance Raman scattering (SERRS). This is possible because μAg powders are very efficient substrates for both the diffuse reflectance IR and the surface-enhanced Raman scattering–SERRS spectroscopic characterization of molecular adsorbates prepared in a similar manner on silver surfaces. Besides, the agglomeration of μAg particles in a buffer solution can be prevented by the layer-by-layer deposition of cationic and anionic polyelectrolytes such as poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA). In this particular study, we used rhodamine B isothiocyanate (RhBITC) as a SERRS marker molecule, and μAg powders adsorbed consecutively with RhBITC and PAH–PAA bilayers were finally derivatized with biotinylated poly(l-lysine). On the basis of the nature of the SERRS peaks of RhBITC, those μAg powders were confirmed to selectively recognize streptavidin molecules down to concentrations of 10−10 g mL−1. Since a number of different molecules can be used as SERS–SERRS marker molecules, the present method proves to be an invaluable tool for multiplex biomolecular sensing/recognition via SERS and SERRS.  相似文献   

14.
Xu S  Ji X  Xu W  Li X  Wang L  Bai Y  Zhao B  Ozaki Y 《The Analyst》2004,129(1):63-68
This paper reports a novel immunoassay based on surface-enhanced Raman scattering (SERS) and immunogold labelling with silver staining enhancement. Immunoreactions between immunogold colloids modified by a Raman-active probe molecule (e.g., 4-mercaptobenzoic acid) and antigens, which were captured by antibody-assembled chips such as silicon or quartz, were detected via SERS signals of Raman-active probe molecule. All the self-assembled steps were subjected to the measurements of ultraviolet-visible (UV-vis) spectra to monitor the formation of a sandwich structure onto a substrate. The immunoassay was performed by a sandwich structure consisting of three layers. The first layer was composed of immobilized antibody molecules of mouse polyclonal antibody against Hepatitis B virus surface antigen (PAb) on a silicon or quartz substrate. The second layer was the complementary Hepatitis B virus surface antigen (Antigen) molecules captured by PAb on the substrate. The third layer was composed of the probe-labelling immunogold nanoparticles, which were modified by mouse monoclonal antibody against Hepatitis B virus surface antigen (MAb) and 4-mercaptobenzoic acid (MBA) as the Raman-active probe on the surface of gold colloids. After silver staining enhancement, the antigen is identified by a SERS spectrum of MBA. A working curve of the intensity of a SERS signal at 1585 cm(-1) due to the [small nu](8a) aromatic ring vibration of MBA versus the concentration of analyte (Antigen) was obtained and the non-optimized detection limit for the Hepatitis B virus surface antigen was found to be as low as 0.5 [micro sign]g mL(-1).  相似文献   

15.
In this paper we report for the first time semi-quantitative analysis of indigo using surface enhanced Raman spectroscopy (SERS) and surface enhance resonance Raman spectroscopy (SERRS). Indigo, a dye widely used today in the textile industry, has been used, historically, both as a dye and as a pigment; the latter in both paintings and in printed material. The molecule is uncharged and largely insoluble in most solvents. The application of SERS/SERRS to the semi-quantitative analysis of indigo has been examined using aggregated citrate-reduced silver colloids with appropriate modifications to experimental protocols to both obtain and maximise SERRS signal intensities. Good linear correlations are observed for the dependence of the intensities of the SERRS band at 1151 cm(-1) using laser exciting wavelengths of 514.5 nm (R=0.9985) and 632.8 nm (R=0.9963) on the indigo concentration over the range 10(-7)-10(-5) and 10(-8)-10(-5) mol dm(-3), respectively. Band intensities were normalised against an internal standard (silver sol band at 243 cm(-1)). Resonance Raman spectra (RRS) of aqueous solutions of indigo could not be collected because of its low solubility and the presence of strong fluorescence. It was, however, possible to obtain RS and RRS spectra of the solid at each laser excitation wavelength. The limits of detection (L.O.D.) of indigo by SERS and SERRS using 514.5 and 632.8 nm were 9 ppm at both exciting wavelengths. Signal enhancement by SERS and SERRS was highly pH dependent due to the formation of singly protonated and possibly doubly protonated forms of the molecule at acidic pH. The SERS and SERRS data provide evidence to suggest that an excess of monolayer coverage of the dye at the surface of silver colloids is observed at concentrations greater than 7.85x10(-6) mol dm(-3) for each exciting wavelength. The data reported herein also strongly suggest the presence of multiple species of the indigo molecule.  相似文献   

16.
The dye nuclear fast red has been detected and determined semi-quantitatively by means of surface enhanced resonance Raman scattering (SERRS) and surface enhanced Raman scattering (SERS), using laser exciting wavelengths of 514.5 and 632.8 nm, respectively, by employing a citrate-reduced silver colloid. A good linear correlation is observed for the dependence of the intensities of the SERRS bands at 989 cm−1 (R=0.9897) and 1278 cm−1 (R=0.9872) on dye concentration over the range 10−9 to 10−7 M, when using an exciting wavelength of 514.5 nm. At dye concentrations above 10−7 M, the concentration dependence of the SERRS signals is non-linear. This is almost certainly due to the coverage of the colloidal silver particles being in excess of a full monolayer of the dye. A linear correlation is also observed for the dependence of the intensities of the SERS bands at 989 cm−1 (R=0.9739) and 1278 cm−1 (R=0.9838) on the dye concentration over the range 10−8 to 10−6 M when using an exciting wavelength of 632.8 nm. Strong fluorescence prevented collection of resonance Raman scattering (RRS) spectra from powdered samples or aqueous solutions of the dye using an exciting wavelength of 514.5 nm, but weak bands were observed in the spectra obtained from both powdered and aqueous samples of the dye using an exciting wavelength of 632.8 nm. A study of the pH dependence of SERRS/SERS and UV–VIS absorption spectra revealed the presence of different ionisation states of the dye. The limits of detection for nuclear fast red by SERRS (514.5 nm), SERS (632.8 nm) and visible spectroscopy (535 nm) are 9, 89 and 1000 ng ml−1, respectively.  相似文献   

17.
Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS) are powerful optical scattering techniques used in such frontier areas of research as ultrasensitive chemical analysis, the characterization of nanostructures, and the detection of single molecules. However, measuring and, most importantly, interpreting SERS/SERRS spectra can be incredibly challenging. This is the result of modifications to the measured spectra that are due to of a variety of instabilities and contributions. These interferences and modifications arise from the nature of the enhancement itself, as well as the conditions used to attain SERS spectra. The present report is an attempt to collect in one place the analytical interferences that are most commonly found during the collection of SERS/SERRS spectra.  相似文献   

18.
Douglas P  Stokes RJ  Graham D  Smith WE 《The Analyst》2008,133(6):791-796
A micro-bead sandwich assay for P38 mitogen-activated protein kinase using surface enhanced resonance Raman spectroscopy (SERRS) detection is reported. Monoclonal capture antibodies were immobilised on a solid phase of magnetic micro-beads with secondary detection using a rhodamine-labelled antibody. Quantitative SERRS detection of the secondary antibody was possible with a limit of detection of 9.5 x 10(-12) mol dm(-3). The sandwich assay was quantitative and sensitive to 6 ng ml(-1). The mechanism of the SERRS detection in the immunoassay was investigated. The addition of SERRS aggregating agents causes the dissociation of the immuno-complex from the magnetic beads. Scanning electron microscopy images indicate that the colloidal suspension rather than adsorbed silver nanoparticles on the beads provide the SERRS signals, that the aggregate size is partially controlled and that there is some inhomogeneity in the distribution of organic matter on the nanoscale.  相似文献   

19.
The growing interest in DNA diagnostics is addressed today by microarrays with fluoresence detection. In our approach, we utilize spatially defined arrays of short oligonucleotides on a modified glass surface. Surface enhanced resonance Raman scattering (SERRS) is used to obtain molecularly specific spectra of the Raman‐active dye‐labeled DNA. Nanoparticles produced by enzymatic silver deposition are used as SERS‐active substrate. They grow directly on the modified oligonucleotides and only in the spatially defined areas on the chip. Furthermore, they potentially offer several advantages for SERS detection. The nanoparticles are characterized and their ability for use as SERS‐ and SERRS‐active substrate is estimated. Three different Raman‐active dyes are investigated for their potential for involvement in sequence specific DNA analysis.  相似文献   

20.
Hybrid micro/nanostructures composed with alternative Au nanoparticle (NP) arrays and protein dots were fabricated via layer-by-layer self-assembly and the microsphere lithography technique. These micro/nanostructures were novel protein chips which had applications in the surface-enhanced Raman spectroscopy (SERS) based immunoassay. The synthetic processes were to fabricate Au nanowell arrays initially by using the templates of ordered monolayers of polystyrene (PS) microsphere arrays. Then, the proteins of antibody (avidin) were imbedded in the Au nanowells. Lastly, the immune reaction was implemented by adding atto 610-biotin. SERS spectra were recorded as the immunoassay readout, which showed the lowest detective concentration of 100 pg/mL. These new kind of SERS-based protein chips were easy to fabricate, inexpensive and supersensitive, and exhibit the potential application in bioassays, forensics and biosensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号