首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In this paper we develop a concise and transparent approach for solving Mellin convolution equations where the convolutor is the product of an algebraic function and a Gegenbauer function. Our method is primarily based on

1. the use of fractional integral/differential operators;

2. a formula for Gegenbauer functions which is a fractional extension of the Rodrigues formula for Gegenbauer polynomials (see Theorem 3);

3. an intertwining relation concerning fractional integral/differential operators (see Theorem 1), which in the integer case reads (d/dx)2n+1 = (x−1 d/dx)nx2n+1(x−1 d/dx)n+1.

Thus we cover most of the known results on this type of integral equations and obtain considerable extensions. As a special illustration we present the Gegenbauer transform pair associated to the Radon transformation.  相似文献   


2.
3.
MEROMORPHIC FUNCTIONS SHARING TWO FINITE SETS   总被引:1,自引:1,他引:0  
Let S1 = {∞} and S2 = {w: Ps(w)= 0}, Ps(w) being a uniqueness polynomial under some restricted conditions. Then, for any given nonconstant meromorphic function f, there exist at most finitely many nonconstant meromorphic functions g such that f-1(Si) = g-1(Si)(i = 1,2), where f-1(Si) and g-1(Si) denote the pull-backs of Si considered as a divisor, namely, the inverse images of Si counted with multiplicities, by f and g respectively.  相似文献   

4.
Qiaoliang Li   《Discrete Mathematics》2003,260(1-3):223-230
In this note, we prove that if C is a duadic binary abelian code with splitting μ=μ−1 and the minimum odd weight of C satisfies d2d+1≠n, then d(d−1)n+11. We show by an example that this bound is sharp. A series of open problems on this subject are proposed.  相似文献   

5.
Proof of a conjecture of Fiedler and Markham   总被引:4,自引:0,他引:4  
Let A be an n×n nonsingular M-matrix. For the Hadamard product AA−1, M. Fiedler and T.L. Markham conjectured in [Linear Algebra Appl. 10l (1988) 1] that q(AA−1)2/n, where q(AA−1) is the smallest eigenvalue (in modulus) of AA−1. We considered this conjecture in [Linear Algebra Appl. 288 (1999) 259] having observed an incorrect proof in [Linear Algebra Appl. 144 (1991) 171] and obtained that q(AA−1)(2/n)(n−1)/n. The present paper gives a proof for this conjecture.  相似文献   

6.
Given a graph G and a positive integer d, an L(d,1)-labeling of G is a function f that assigns to each vertex of G a non-negative integer such that if two vertices u and v are adjacent, then |f(u)−f(v)|d; if u and v are not adjacent but there is a two-edge path between them, then |f(u)−f(v)|1. The L(d,1)-number of G, λd(G), is defined as the minimum m such that there is an L(d,1)-labeling f of G with f(V){0,1,2,…,m}. Motivated by the channel assignment problem introduced by Hale (Proc. IEEE 68 (1980) 1497–1514), the L(2,1)-labeling and the L(1,1)-labeling (as d=2 and 1, respectively) have been studied extensively in the past decade. This article extends the study to all positive integers d. We prove that λd(G2+(d−1)Δ for any graph G with maximum degree Δ. Different lower and upper bounds of λd(G) for some families of graphs including trees and chordal graphs are presented. In particular, we show that the lower and the upper bounds for trees are both attainable, and the upper bound for chordal graphs can be improved for several subclasses of chordal graphs.  相似文献   

7.
We construct the polynomial pm,n* of degree m which interpolates a given real-valued function f L2[a, b] at pre-assigned n distinct nodes and is the best approximant to f in the L2-sense over all polynomials of degree m with the same interpolatory character. It is shown that the L2-error pm,n*f → 0 as m → ∞ if f C[a, b].  相似文献   

8.
Let S be a subdivision of d into n convex regions. We consider the combinatorial complexity of the image of the (k - 1)-skeleton of S orthogonally projected into a k-dimensional subspace. We give an upper bound of the complexity of the projected image by reducing it to the complexity of an arrangement of polytopes. If k = d − 1, we construct a subdivision whose projected image has Ω(n(3d−2)/2) complexity, which is tight when d 4. We also investigate the number of topological changes of the projected image when a three-dimensional subdivision is rotated about a line parallel to the projection plane.  相似文献   

9.
In this paper we classify linear maps preserving commutativity in both directions on the space N(F) of strictly upper triangular (n+1)×(n+1) matrices over a field F. We show that for n3 a linear map on N(F) preserves commutativity in both directions if and only if =+f where is a product of standard maps on N(F) and f is a linear map of N(F) into its center.  相似文献   

10.
This paper considers the following problem: given two point sets A and B (|A| = |B| = n) in d dimensional Euclidean space, determine whether or not A is congruent to B. This paper presents an O(n(d−1)/2 log n) time randomized algorithm. The birthday paradox, which is well-known in combinatorics, is used effectively in this algorithm. Although this algorithm is Monte-Carlo type (i.e., it may give a wrong result), this improves a previous O(nd−2 log n) time deterministic algorithm considerably. This paper also shows that if d is not bounded, the problem is at least as hard as the graph isomorphism problem in the sense of the polynomiality. Several related results are described too.  相似文献   

11.
Let k be a field of characteristic 0, and let f : knkn be a polynomial map with components of the form fi=xi+hi, where the hi are monomials. If the Jacobian determinant of the map f is a nonzero constant, then f is a tame automorphism. If, in addition, each hi is either constant or of degree 2 or more, then f is linearly triangularizable.  相似文献   

12.
We show for which (d,n) ∈ Z×N there exists a smooth self-map f:S2S2 so that deg(f)=d and Fix(fn) is a point.  相似文献   

13.
An effective algorithm of [M. Morf, Ph.D. Thesis, Department of Electrical Engineering, Stanford University, Stanford, CA, 1974; in: Proceedings of the IEEE International Conference on ASSP, IEEE Computer Society Press, Silver Spring, MD, 1980, pp. 954–959; R.R. Bitmead and B.D.O. Anderson, Linear Algebra Appl. 34 (1980) 103–116] computes the solution to a strongly nonsingular Toeplitz or Toeplitz-like linear system , a short displacement generator for the inverse T−1 of T, and det T. We extend this algorithm to the similar computations with n×n Cauchy and Cauchy-like matrices. Recursive triangular factorization of such a matrix can be computed by our algorithm at the cost of executing O(nr2log3 n) arithmetic operations, where r is the scaling rank of the input Cauchy-like matrix C (r=1 if C is a Cauchy matrix). Consequently, the same cost bound applies to the computation of the determinant of C, a short scaling generator of C−1, and the solution to a nonsingular linear system of n equations with such a matrix C. (Our algorithm does not use the reduction to Toeplitz-like computations.) We also relax the assumptions of strong nonsingularity and even nonsingularity of the input not only for the computations in the field of complex or real numbers, but even, where the algorithm runs in an arbitrary field. We achieve this by using randomization, and we also show a certain improvement of the respective algorithm by Kaltofen for Toeplitz-like computations in an arbitrary field. Our subject has close correlation to rational tangential (matrix) interpolation under passivity condition (e.g., to Nevanlinna–Pick tangential interpolation problems) and has further impact on the decoding of algebraic codes.  相似文献   

14.
By an f-graph we mean an unlabeled graph having no vertex of degree greater than f. Let D(n, f) denote the digraph whose node set is the set of f-graphs of order n and such that there is an arc from the node corresponding to graph H to the node corresponding to the graph K if and only if K is obtainable from H by the addition of a single edge. In earlier work, algorithms were developed which produce exact results about the structure of D(n, f), nevertheless many open problems remain. For example, the computation of the order and size of D(n, f) for a number of values of n and f have been obtained. Formulas for the order and size for f = 2 have also been derived. However, no closed form formulas have been determined for the order and size of D(n, f) for any value of f. Here we focus on questions concerning the degrees of the nodes in D(n,n − 1) and comment on related questions for D(n,f) for 2 f < n − 1.  相似文献   

15.
An interesting criterion was given by Lashin (A.Y. Lashin, Some convolution properties of analytic functions, Appl. Math. Lett. 18 (2005) 135–138) to be starlike for convolution of analytic functions f, g such that Re[f(z)],Re[g(z)]β,,β<1 in the unit disc U. In this paper we shall improve this criterion.  相似文献   

16.
Let YPn be a non-degenerate curve such that for a general degree t hypersurface S of Pn, t2, the scheme YS does not span Pn. Here we give a lower bound for n in terms of t and some invariants of Y.  相似文献   

17.
We consider reduced, affine hypersurfaces with only isolated singularities. We give an explicit computation of the Hodge-components of their cyclic homology in terms of de Rham cohomology and torsion modules of differentials for large n. It turns out that the vector spaces HCn(A) are finite dimensional for nN − 1.  相似文献   

18.
The rectangle enclosure problem is the problem of determining the subset of n iso-oriented planar rectangles that enclose a query rectangle Q. In this paper, we use a three layered data structure which is a combination of Range and Priority search trees and answers both the static and dynamic cases of the problem. Both the cases use O(n> log2 n) space. For the static case, the query time is O(log2 n log log n + K). The dynamic case is supported in O(log3 n + K) query time using O(log3 n) amortized time per update. K denotes the size of the answer. For the d-dimensional space the results are analogous. The query time is O(log2d-2 n log log n + K) for the static case and O(log2d-1 n + K) for the dynamic case. The space used is O(n> log2d-2 n) and the amortized time for an update is O(log2d-1 n). The existing bounds given for a class of problems which includes the present one, are O(log2d n + K) query time, O(log2d n) time for an insertion and O(log2d-1 n) time for a deletion.  相似文献   

19.
Bonin et al. (1993) recalled an open problem related to the recurrence relation verified by NSW numbers. The recurrence relation is the following: fn+1 = 6fnfn−1, with f1 = 1 and f2 = 7, and no combinatorial interpretation seems to be known. In this note, we define a regular language L whose number of words having length n is equal to fn+1. Then, by using L we give a direct combinatorial proof of the recurrence.  相似文献   

20.
We study open polynomial maps from n to p. For n = p we give a complete characterization, and for p = 2, n ≥ 3 we obtain some partial information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号