首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
By using a surface-modified templating method, Fe(2)O(3)@polypyrrole (PPy) core/shell spindles have been successfully prepared in this paper. The Fe(2)O(3) particles with spindle morphology were initially fabricated as core materials. After the PVP modification, the Fe(2)O(3) spindles were subsequently coated with a tunable thickness layer of PPy by in situ deposition of the conducting polymer from aqueous solution. Hollow PPy spindles were produced by dissolution of the Fe(2)O(3) core from the core/shell particles. High-temperature treatment under vacuum condition covert the hollow PPy spindles into carbon capsules by carbonization of the PPy shell. Transmission electron microscope (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) confirmed the formation of the Fe(2)O(3)@PPy core/shell particles, PPy and carbon capsules with spindle morphology.  相似文献   

2.
An isostructural series of M(2)L(4) molecular capsules quantitatively self-assembled from two M(II) ions (M=Zn, Cu, Pt, Pd, Ni, Co, and Mn) and four bent ligands with embedded anthracene fluorophores. X-ray crystallographic analysis (for M=Zn, Cu, Ni, and Pd) confirmed the formation of closed-shell structures in which the large interior cavities inside the molecular capsules (about 1 nm) were shielded by eight anthracene panels. Analysis of the Zn(II) and Cu(II) structures showed the inclusion of an unusual triad guest cluster; four MeCN molecules, one water molecule, and one CF(3)SO(3)(-) ion were located inside the cavities. Full characterization by NMR spectroscopy and MS (ESI-TOF) demonstrated that the molecular capsules were quite stable and persist in solution. The fluorescence properties of the isostructural capsules were strongly dependent on the identity of the metal species: the Zn(II) capsule emitted strong blue fluorescence with a high quantum yield (Φ=0.8), in sharp contrast to the weakly emissive Ni(II) and Mn(II) capsules and the completely non-emissive Pd(II), Pt(II), and Co(II) capsules. On the other hand, the Cu(II) capsule exhibited solvatochromism and solvent-dependent emission behavior; blue emission of the capsule was "on" in DMSO but "off" in MeCN.  相似文献   

3.
Silver halide (AgX) microcrystal was used as template to synthesize hollow polyelectrolyte capsules. These hollow capsules were characterized by laser light scattering (LLS) used to measure the size of the capsules in solution. The ratio of hydrodynamic radius (Rh) from dynamic LLS to the radius of gyration (Rg) from static LLS is almost unity, revealing that the entities are hollow in solution. The results suggest that the LLS method can be regarded as a good complement to the confocal laser scanning microscopy (CLSM) method for the characterization of small hollow capsules, and it possesses the advantage of not needing fluorescence labeling.  相似文献   

4.
Different approaches for the synthesis of binary polyelectrolyte/inorganic layered composite capsules of micron size are described. As the polyelectrolyte part of the composite, a poly(styrene sulfonate)/poly(allylamine hydrochloride) complex was taken; the inorganic component was composed of magnetic nanoparticles (Fe3O4, CoFe2O4, MnFe2O4, ZnFe2O4), insulator nanoparticles (rare-earth fluorides) or metal nanoparticles (Ag). An inner inorganic layer was formed inside the hollow polyelectrolyte capsule via chemical or photochemical reaction in a spatially restricted capsule volume. The inorganic nanophase synthesized was characterized by transmission electron microscopy, scanning electron microscopy, and wide angle X-ray scattering techniques and weakly crystallized particles 6–9 nm in diameter were detected, presumably attached to the inner side of the capsule shell. Polyelectrolyte capsules filled with ferrite (magnetite) particles possess substantial magnetic activity and are easily manipulated in water solution by an external magnetic field.  相似文献   

5.
In the presence of methanol the tetrakis(benzoxazines) complex tetramethylammonium cation within the cavity, and the cavity is completely sealed by two intramolecular hydrogen bonds between amide groups. The Cl(-) anion is found external to the cavity. In CHCl(3), Me(4)N(+) is complexed within the cavity, but the Cl(-) anion acts as a stopper in the upper rim of the cavity, hydrogen-bonded to the amide groups. The solution results are supported by single-crystal X-ray structural studies of both the single-molecule molecular capsules, and those stoppered by Cl(-).  相似文献   

6.
In the present study, we used diffusion NMR to probe the structures and characteristics of the products obtained from the self-assembly of resorcin[4]arenes 1a and 1b and pyrogallol[4]arenes 2a and 2b in CDCl(3) solutions. It was found that all four molecules self-assemble into hexameric capsules. The hexameric capsules of pyrogallol[4]arenes 2a and 2b were found to be more stable than the capsules of resorcin[4]arenes 1a and 1b in polar media. We also studied the role of water molecules in the self-assembly of the different capsules and found that water molecules are part of the hexameric capsules of resorcin[4]arenes 1a and 1b but not in the capsules of pyrogallol[4]arenes 2a and 2b. It was found that the self-assembly process between the resorcin[4]arenes and pyrogallol[4]arenes proceeds with self-recognition. When mixing two macrocycles of different types in a chloroform solution, no heterohexamers are formed, only the capsule constructed from the same macrocycle is detected. However, when two resorcin[4]arenes (i.e., 1a and 1b) or two pyrogallol[4]arenes (i.e., 2a and 2b) are mixed, heterohexamers are formed over time. In addition, we found that resorcin[4]arenes and pyrogallol[4]arenes differ significantly in their guest affinity. The capsules of 1a and 1b can accommodate both the tertiary alkylamines and their respective ammonium salts, while the capsules of 2a and 2b encapsulate only the neutral tertiary alkylamines.  相似文献   

7.
Low-density tin dioxide (SnO2) is required for radiating monochromatic extreme ultraviolet (EUV) light with low debris and high conversion efficiency from a laser. In this paper, tin dioxide nanoparticle hollow microcapsules were successfully fabricated by a layer-by-layer template technique. The obtained capsules have a rougher surface (30 nm in rms) compared to the freshly prepared polyelectrolyte capsules. Based on the X-ray diffraction (XRD) results, the tin dioxide nanoparticles well maintained their size after they were assembled on the capsules' surfaces. In order to remove the polymer template, a heat treatment was introduced, and after the heat treatment the capsule sizes shrank about 71% (the average size was from 4.9 to 3.5 mum), and the obtained capsules maintained their round shape after water evaporation. The narrowest bandwidth at the 13.5 nm emission in the EUV region was observed when the capsules were irradiated by a CO2 laser with an intensity of 2.9 x 10(10) W/cm (2).  相似文献   

8.
研究了胶束增强型聚电解质(PAH/PSS和PADA/PSS)胶囊在不同溶液环境中的形貌变化,发现这种新型的胶囊具有迥异于传统聚电解质胶囊的囊壁结构;研究了二维聚电解质复合膜与模板溶解液中嵌段共聚物PS-b-PAA胶束之间的相互作用,发现胶束层可以通过静电力与聚电解质胶囊囊壁相互作用.同时,模拟模板溶出后聚电解质胶囊内部的环境条件,研究了嵌段共聚物胶束在胶囊内部的存在状态及其在透析过程中的变化规律,认为共聚物可以通过疏水作用沉积于聚电解质复合膜的内壁,并通过Ca2+离子的桥联作用稳定,也就是在聚电解质复合膜层基础上又形成了一层胶束层.即这种胶束增强型聚电解质微胶囊的囊壁是由聚电解质层和胶束层所形成的双层结构.用这种双层结构模型,我们合理解释了胶囊在高盐离子浓度下的形貌变化.  相似文献   

9.
The fabrication of polyelectrolyte multilayer capsules with controllable submicron‐sized subdomains and the in situ synthesis of silver nanoparticles are reported. Because poly(acrylic acid) (PAA) is released from the shell of the capsules in the dissolution process of sacrificial cores, the remaining poly(4‐vinylpyridine) (PVP) forms subdomains of spheres with controllable sizes, which can be tuned by the number of PVP/PAA bilayers. This creates capsules with special surface morphology and enables the in situ synthesis of Ag nanoparticles within the PVP subdomains on the shell of capsules. In addition, the in‐situ formed Ag nanoparticles can be mostly released from PVP subdomains of capsules in pH 2.0 solution, whereas they are stable in neutral solution. These specially designed capsules containing Ag nanoparticles can be used as antimicrobial materials and potentially benefit remote drug release by laser activation.  相似文献   

10.
Bacterial cellulose (BC) was investigated for the first time for the preparation of capsule shells for immediate and sustained release of drugs. The prepared capsule shells were characterized using X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. The BC capsule shells were studied for drug release using an USP type-I dissolution apparatus. Irrespective of the drying method and the thickness of the BC sheet, the capsule shells displayed an immediate drug release profile. Moreover, the addition of release-retardant cellulosic polymers sustained the drug release having first-order kinetics for hydroxypropylmethylcellulose and carboxymethyl cellulose sodium with R 2 values of 0.9995 and 0.9954, respectively. Furthermore, these capsules shells remained buoyant in 0.1 N HCl (pH 1.2) solution up to 12 h. This study showed that BC is a promising alternative to gelatin capsules with both immediate and sustained drug release properties depending upon the compositions of the encapsulated materials.  相似文献   

11.
ABii diphosphonatocavitands self-assemble in chloroform solution to form dimeric molecular capsules. The molecular capsules can incarcerate an N-methylpyridinium or N-methylpicolinium guest. We have demonstrated that the supramolecular assembly acts as a molecular rotor as a result of the restricted motion of the guest inside the molecular cavity. In the solid state, X-ray diffraction analysis of the free host showed that two cavitands interact through strong hydrogen bonds to give the supramolecular self-assembled capsule. The solid-state structure of the N-methylpicolinium complex is comparable to that of the free host and indicates that the guest is not a prerequisite for the formation of the capsule. DOSY NMR studies provided a definitive argument for the formation of the free and complexed supramolecular capsule in CDCl(3) solution. In solution, the tumbling of the N-methylpyridinium and N-methylpicolinium guests about the equatorial axes of the host can be frozen and differs by the respective energy barriers, with the larger picolinium substrate having a larger value (ΔG(++) = 69.7 kJ mol(-1)) than the shorter pyridinium guest (ΔG(++) = 44.8 kJ mol(-1)). This behavior corresponds to the restricted rotation of a rotator in a supramolecular rotor.  相似文献   

12.
Alkaline phosphatase (ALP) was encapsulated in gellan-chitosan polyion complex (PIC) capsules using a convenient procedure. The recovery of ALP was about 50% when the capsules were prepared by dropping a solution of ALP and gellan mixture (ALP/gellan) into a chitosan solution. When p-nitrophenyl phosphate (p-NPP) and 5-bromo-4-chloro-3-indolyl phosphate (BCIP) were incubated with ALP/gellan-chitosan capsules as substrates for ALP, the transparent colorless capsules changed to yellow and blue, respectively. The encapsulation of ALP into the PIC capsules was also confirmed by SDS-PAGE and immunoblot analyses. The ALP and polypeptides of more than 30 kDa remained without release even after incubation at 4 degrees C for 14 d. The biochemical properties of the encapsulated ALP activity were similar to those of the intact enzyme. When the solution containing p-NPP was loaded on a column packed with ALP/gellan-chitosan capsules at 27 degrees C, approximately 75% of p-NPP was hydrolyzed by passing through the column. No significant leakage of ALP was observed during the procedure, indicating that the capsules were resistant to pressure in the chromatographic operation. Furthermore, 70% of the hydrolytic activity of the packed capsules remained after storage at 4 degrees C for one month. These results suggest that the polyion complex capsules could be useful materials for protein fixation without chemical modification. [Diagram: see text] Encapsulation of ALP into PIC capsules and the morphological changes seen in the absence of the ALP substrate and in the presence of p-NPP and BICP.  相似文献   

13.
Hollow capsules can be prepared in a single stage by the interfacial complexation of methylcellulose (MC) with poly(acrylic acid) (PAA) or tannic acid (TA) via hydrogen bonding in aqueous solutions. The formation of capsules is observed when viscous solution of methylcellulose is added drop-wise to diluted solutions of polyacids under acidic conditions. The optimal parameters such as polymer concentration and solution pH for the formation of these capsules were established in this work. It was found that tannic acid forms capsules in a broader range of concentrations and pHs compared to poly(acrylic acid). The TA/MC capsules exhibited better stability compared to PAA/MC in response to increase in pH: the dissolution of TA/MC capsules observed at pH > 9.5; whereas PAA/MC capsules dissolved at pH > 3.8. The interfacial complexation can be considered as a potential single stage alternative to the formation of capsules using multistage layer-by-layer deposition method.  相似文献   

14.
The influence of the restricted volume of poly(styrene sulfonate)/poly(allylamine hydrochloride) capsules of different size (2.2, 4.2, and 8.1 microm) on the TiO2-assisted photosynthesis of urea from inorganic precursors (CO2 and NO(3-)) in aqueous solution was demonstrated. Poly(vinyl alcohol) was employed as electron donor to facilitate the photosynthetic process. Decreasing the size of the confined microvolume of polyelectrolyte capsules accelerates the NO(3-) photoreduction, which is a limiting stage of the urea photosynthesis and, correspondingly, increases the efficiency of urea production. The highest yield of urea photosynthesis (37%) was achieved for Cu-modified TiO2 nanoparticles encapsulated inside 2.2 microm poly(styrene sulfonate)/poly(allylamine hydrochloride) capsules.  相似文献   

15.
Over the past two decades,layer-by-layer(LbL) assembly of micro/nanocapsules has been of interest for the investigation of bio-nano interactions to explore bio-applications,such as drug delivery.The choice of an appropriate template that can be easily dissolved under mild conditions is one of the challenges for the assembly of LbL capsules.Herein,we report the engineering of LbL capsules with tunable morphologies using cuprous oxide(Cu_2O) particles as templates.Cu_2O particles with cubic,tetradecahedral or spherical morphologies were synthesized via hydrothermal processes,which can be dissolved under mild condition(e.g.,sodium thiosulfate solution).The influence of capsule morphologies on cell association was investigated,which indicates that LbL capsules with cubic geometry promoted cell association up to 4 and 9-fold than tetradecahedral and spherical capsules,respectively.The reported method provides a new avenue for the assembly of LbL capsules with different morphologies,which has the potential for better understanding of biological interactions of LbL capsules.  相似文献   

16.
After more than a century of research on resorcin[4]arenes (1) it is clear that such systems form spontaneously [1(6)(H(2)O)(8)]-type hexameric capsules in wet, non-polar, organic solvents. However, the interactions of these hexameric capsules with alcohols are far from being solved. Here we provide the results of an extensive study on the interaction of different alcohols with the hexameric capsules of resorcin[4]arene 1a by focusing on the exchange of magnetization manifested in diffusion NMR measurements of such capsular systems. We found that some alcohols such as 2-octyl-1-dodecanol and 1-octadecanol do not interact with the hexamers of 1a, whereas other alcohols such as 3-ethyl-3-pentanol, 2-ethyl-1-butanol and more act as simple guests and are simply encapsulated in the hexamers. Others alcohols such as 3-pentanol, 2-methyl-1-butanol and others, are part of the hexameric structure where they can exchange magnetization with alcohols in the bulk. The bulkier alcohols, due to an increase of the chain length or in branching, have a higher tendency to be encapsulated rather than being part of the hexameric capsule superstructure. This study demonstrate the unique information that diffusion NMR spectroscopy can provide on supramolecular systems in solution and on the precaution that should be exercised when analyzing diffusion NMR data of such dynamic supramolecular capsules.  相似文献   

17.
The development and validation of a reversed-phase liquid chromatographic (LC) method for the determination of cetirizine dihydrochloride in oral formulations are described. An isocratic LC analysis was performed on a reversed-phase C18 column (250 x 4.6 mm id, 5 microm particle size). The mobile phase was 1% orthophosphoric acid solution, pH 3.0-acetonitrile (60 + 40, v/v), pumped at a constant flow rate of 1.0 mL/min. Measurements were made at a wavelength of 232 nm. The calibration curves were linear over the range of 10-30 microg/mL (r2 = 0.9999). The relative standard deviation (RSD) values for intraday precision were 0.94 and 1.43% for tablets and compounded capsules, respectively. The RSD values for interday precision were 0.13 and 0.82% for tablets and compounded capsules, respectively. Recoveries ranged from 97.7 to 101.8% for tablets and from 98.4 to 102% for compounded capsules. No interferences from the excipients were observed. Because of its simplicity and accuracy, the method is suitable for routine quality-control analysis for cetirizine in tablets and compounded capsules.  相似文献   

18.
Avram L  Cohen Y 《Organic letters》2008,10(8):1505-1508
We followed the self-assembly of C-alkyl-resorcin[4]arene (1a,1b) in the presence of tetraethylammonium salts (2). The X-ray structure of C-ethyl-resorcin[4]arene (1c) in the presence of TEABr (2b), showed a dimer encapsulating one guest. However, diffusion measurements reveal that two molecules of tetraethylammonium are encapsulated within the hexameric capsule of 1a,b in chloroform, regardless of the anion. Most importantly, the anion affects the role of water in the self-assembly and the nature of the formed capsules.  相似文献   

19.
The heparin-loaded microcapsules were successfully prepared by layer-by-layer deposition of chitosan (CHI) and heparin (Hep). Film growth was confirmed by the reversal of ζ-potentials during polysaccharide deposition. Both scanning electron microscopy and transmission electron microscope evidenced the integrity of (CHI/Hep)5 capsules after the removal of cores. By assembling the carriers with chitosan that are inherently degradable, the capsules were engineered to degrade specifically in the presence of lysozyme. It was demonstrated that the loaded heparin was released from the capsules over a long period of time when being incubated in lysozyme solution. With these results, such CHI/Hep capsules may have a great potential as controlled release carrier for heparin.  相似文献   

20.
In aqueous media the deep-cavity cavitand octaacid 1 forms stable dimeric molecular capsules 1(2), which are stabilized by hydrophobic effects. In this work we investigate the binding interactions in aqueous solution between these capsules and the redox active guests, ferrocene (Fc) and three 4,4'-bipyridinium (viologen) dications: methyl viologen (MV(2+)), ethyl viologen (EV(2+)), and butyl viologen (BV(2+)). Using NMR spectroscopic and electrochemical techniques we clearly show that the hydrophobic Fc guest is encapsulated inside 1(2). An interesting effect of this encapsulation is that the reversible voltammetric response of Fc is completely eliminated when it resides inside the 1(2) capsular assembly, a finding that is attributed to very slow electrochemical kinetics for the oxidation of Fc@1(2). Diffusion coefficient measurements (PGSE NMR spectroscopy) reveal that all three viologen guests are strongly bound to the dimeric capsules. However, the (1)H NMR spectroscopic data are not consistent with encapsulation and the measured diffusion coefficients indicate that two viologen guests can strongly associate with a single dimeric capsule. Furthermore, the (V(2+))(2)*1(2) complex is capable of encapsulating ferrocene, clearly suggesting that the viologen guests are bound externally, via coulombic interactions, to the anionic polar ends of the capsule. The electrochemical kinetic rate constants for the reduction of the viologen residue in the V(2+)*1(2) complexes were measured and found to be substantially lower than those for the free viologen guests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号