首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider an ensemble of self-dual matrices with arbitrary complex entries. This ensemble is closely related to a previously defined ensemble of anti-symmetric matrices with arbitrary complex entries. We study the two-level correlation functions numerically. Although no evidence of non-monotonicity is found in the real space correlation function, a definite shoulder is found. On the analytical side, we discuss the relationship between this ensemble and the β=4 two-dimensional one-component plasma, and also argue that this ensemble, combined with other ensembles, exhausts the possible universality classes in non-hermitian random matrix theory. This argument is based on combining the method of hermitization of Feinberg and Zee with Zirnbauer's classification of ensembles in terms of symmetric spaces.  相似文献   

2.
The evolution of the distribution of nanodefects formed on the surface of polished copper foils under tensile stresses is investigated. It is found that nanodefects form four ensembles. The energies of formation and the mean sizes of nanodefects in two consecutive ensembles differ, respectively, by a factor of three. When the concentration of nanodefects in a particular ensemble reaches a thermodynamically optimum value (≈5%), some of these nanodefects annihilate and the other nanodefects transform to nanodefects of the following ensemble. The load applied to the sample continuously generates nanodefects comprising the first ensemble, which leads to periodic oscillations of the nanodefect concentration in all four ensembles.  相似文献   

3.
This paper shows for a general class of statistical mechanical models that when the microcanonical and canonical ensembles are nonequivalent on a subset of values of the energy, there often exists a generalized canonical ensemble that satisfies a strong form of equivalence with the microcanonical ensemble that we call universal equivalence. The generalized canonical ensemble that we consider is obtained from the standard canonical ensemble by adding an exponential factor involving a continuous function g of the Hamiltonian. For example, if the microcanonical entropy is C2, then universal equivalence of ensembles holds with g taken from a class of quadratic functions, giving rise to a generalized canonical ensemble known in the literature as the Gaussian ensemble. This use of functions g to obtain ensemble equivalence is a counterpart to the use of penalty functions and augmented Lagrangians in global optimization. linebreak Generalizing the paper by Ellis et al. [J. Stat. Phys. 101:999–1064 (2000)], we analyze the equivalence of the microcanonical and generalized canonical ensembles both at the level of equilibrium macrostates and at the thermodynamic level. A neat but not quite precise statement of one of our main results is that the microcanonical and generalized canonical ensembles are equivalent at the level of equilibrium macrostates if and only if they are equivalent at the thermodynamic level, which is the case if and only if the generalized microcanonical entropy s–g is concave. This generalizes the work of Ellis et al., who basically proved that the microcanonical and canonical ensembles are equivalent at the level of equilibrium macrostates if and only if they are equivalent at the thermodynamic level, which is the case if and only if the microcanonical entropy s is concave.  相似文献   

4.
We prove that it is possible to remotely prepare an ensemble of noncommuting mixed states using communication equal to the Holevo information for this ensemble. This remote preparation scheme may be used to convert between different ensembles of mixed states in an asymptotically lossless way, analogous to concentration and dilution for entanglement.  相似文献   

5.

Dynamical ensembles have been introduced to study constrained stochastic processes. In the microcanonical ensemble, the value of a dynamical observable is constrained to a given value. In the canonical ensemble a bias is introduced in the process to move the mean value of this observable. The equivalence between the two ensembles means that calculations in one or the other ensemble lead to the same result. In this paper, we study the physical conditions associated with ensemble equivalence and the consequences of non-equivalence. For continuous time Markov jump processes, we show that ergodicity guarantees ensemble equivalence. For non-ergodic systems or systems with emergent ergodicity breaking, we adapt a method developed for equilibrium ensembles to compute asymptotic probabilities while caring about the initial condition. We illustrate our results on the infinite range Ising model by characterizing the fluctuations of magnetization and activity. We discuss the emergence of non-ergodicity by showing that the initial condition can only be forgotten after a time that scales exponentially with the number of spins.

  相似文献   

6.
Consider fixed and bounded trace Gaussian orthogonal, unitary and symplectic ensembles, closely related to Gaussian ensembles without any constraint. For three restricted trace Gaussian ensembles, we prove universal limits of correlation functions at zero and at the edge of the spectrum edge. Our argument also applies to restricted trace ensembles with monomial potentials. In addition, by using the universal result in the bulk for fixed trace Gaussian unitary ensemble, which has been obtained by Götze and Gordin, we also prove the universal limits of correlation functions everywhere in the bulk for bounded trace Gaussian unitary ensemble.  相似文献   

7.
We clarify different definitions of the density matrix by proposing the use of different names, the full density matrix for a single-closed quantum system, the compressed density matrix for the averaged single molecule state from an ensemble of molecules, and the reduced density matrix for a part of an entangled quantum system, respectively. We show that ensembles with the same compressed density matrix can be physically distinguished by observing fluctuations of various observables. This is in contrast to a general belief that ensembles with the same compressed density matrix are identical. Explicit expression for the fluctuation of an observable in a specified ensemble is given. We have discussed the nature of nuclear magnetic resonance quantum computing. We show that the conclusion that there is no quantum entanglement in the current nuclear magnetic resonance quantum computing experiment is based on the unjustified belief that ensembles having the same compressed density matrix are identical physically. Related issues in quantum communication are also discussed.  相似文献   

8.
We describe a theoretical scheme that allows for transfer of quantum states of atomic collective excitation between two macroscopic atomic ensembles localized in two spatially-separated domains. The conception is based on the occurrence of double-exciton dark states due to the collective destructive quantum interference of the emissions from the two atomic ensembles. With an adiabatically coherence manipulation for the atom-field couplings by stimulated Rmann scattering, the dark states will extrapolate from an exciton state of an ensemble to that of another. This realizes the transport of quantum information among atomic ensembles.  相似文献   

9.
We describe a theoretical scheme that allows for transfer of quantum states of atomic collective excitation between two macroscopic atomic ensembles localized in two spatially-separated domains. The conception is based on the occurrence of double-exciton dark states due to the collective destructive quantum interference of the emissions from the two atomic ensembles. With an adiabatically coherence manipulation for the atom-field couplings by stimulated Ramann scattering, the dark states will extrapolate from an exciton state of an ensemble to that of another. This realizes the transport of quantum information among atomic ensembles.  相似文献   

10.
Feedback control in a collective flashing ratchet   总被引:1,自引:0,他引:1  
An ensemble of Brownian particles in a feedback controlled flashing ratchet is studied. The ratchet potential is switched on and off depending on the position of the particles, with the aim of maximizing the current. We study in detail a protocol which maximizes the instant velocity of the center of mass of the ensemble at any time. This protocol is optimal for one particle and performs better than any periodic flashing for ensembles of moderate size, but is defeated by a random or periodic switching for large ensembles.  相似文献   

11.
We propose a protocol to achieve high fidelity quantum state teleportation of a macroscopic atomic ensemble using a pair of quantum-correlated atomic ensembles. We show how to prepare this pair of ensembles using quasiperfect quantum state transfer processes between light and atoms. Our protocol relies on optical joint measurements of the atomic ensemble states and magnetic feedback reconstruction.  相似文献   

12.
Superradiance, the enhanced collective emission of energy from a coherent ensemble of quantum systems, has been typically studied in atomic ensembles. In this work we study theoretically the enhanced emission of energy from coherent ensembles of harmonic oscillators. We show that it should be possible to observe harmonic oscillator superradiance for the first time in waveguide arrays in integrated photonics. Furthermore, we describe how pairwise correlations within the ensemble can be measured with this architecture. These pairwise correlations are an integral part of the phenomenon of superradiance and have never been observed in experiments to date.  相似文献   

13.
Renormalization group arguments are applied to an ensemble of disordered electronic systems (without electron-electron interaction). The renormalization group procedure consists of a sequence of transformations of the length and the energy scales, and of orthogonal transformations of the electronic states. Homogeneity and power laws are obtained for various one and two-particle correlations and for the low-temperature conductivity in the vicinity of the mobility edge. Two types of fixed point ensembles are proposed, a homogeneous ensemble which is roughly approximated by a cell model, and an inhomogeneous ensemble.  相似文献   

14.
We consider a general class of statistical mechanical models of coherent structures in turbulence, which includes models of two-dimensional fluid motion, quasi-geostrophic flows, and dispersive waves. First, large deviation principles are proved for the canonical ensemble and the microcanonical ensemble. For each ensemble the set of equilibrium macrostates is defined as the set on which the corresponding rate function attains its minimum of 0. We then present complete equivalence and nonequivalence results at the level of equilibrium macrostates for the two ensembles. Microcanonical equilibrium macrostates are characterized as the solutions of a certain constrained minimization problem, while canonical equilibrium macrostates are characterized as the solutions of an unconstrained minimization problem in which the constraint in the first problem is replaced by a Lagrange multiplier. The analysis of equivalence and nonequivalence of ensembles reduces to the following question in global optimization. What are the relationships between the set of solutions of the constrained minimization problem that characterizes microcanonical equilibrium macrostates and the set of solutions of the unconstrained minimization problem that characterizes canonical equilibrium macrostates? In general terms, our main result is that a necessary and sufficient condition for equivalence of ensembles to hold at the level of equilibrium macrostates is that it holds at the level of thermodynamic functions, which is the case if and only if the microcanonical entropy is concave. The necessity of this condition is new and has the following striking formulation. If the microcanonical entropy is not concave at some value of its argument, then the ensembles are nonequivalent in the sense that the corresponding set of microcanonical equilibrium macrostates is disjoint from any set of canonical equilibrium macrostates. We point out a number of models of physical interest in which nonconcave microcanonical entropies arise. We also introduce a new class of ensembles called mixed ensembles, obtained by treating a subset of the dynamical invariants canonically and the complementary set microcanonically. Such ensembles arise naturally in applications where there are several independent dynamical invariants, including models of dispersive waves for the nonlinear Schrödinger equation. Complete equivalence and nonequivalence results are presented at the level of equilibrium macrostates for the pure canonical, the pure microcanonical, and the mixed ensembles.  相似文献   

15.
16.
We consider m spinless Bosons distributed over l degenerate single-particle states and interacting through a k-body random interaction with Gaussian probability distribution (the Bosonic embedded k-body ensembles). We address the cases of orthogonal and unitary symmetry in the limit of infinite matrix dimension, attained either as l→∞ or as m→∞. We derive an eigenvalue expansion for the second moment of the many-body matrix elements of these ensembles. Using properties of this expansion, the supersymmetry technique, and the binary correlation method, we show that in the limit l→∞ the ensembles have nearly the same spectral properties as the corresponding Fermionic embedded ensembles. Novel features specific for Bosons arise in the dense limit defined as m→∞ with both k and l fixed. Here we show that the ensemble is not ergodic and that the spectral fluctuations are not of Wigner-Dyson type. We present numerical results for the dense limit using both ensemble unfolding and spectral unfolding. These differ strongly, demonstrating the lack of ergodicity of the ensemble. Spectral unfolding shows a strong tendency toward picket-fence-type spectra. Certain eigenfunctions of individual realizations of the ensemble display Fock-space localization.  相似文献   

17.
18.
In ensembles of annealed ferrimagnetic alloy (DyPr)–(CoFe)–B microparticles in the free state and fixed in polymer, the coercivity differs more than by an order of magnitude. The contributions of orientation locking of magnetic axes of particles and the dipole magnetic interaction between particles to the coercivity and saturation magnetization field of an ensemble are discussed. In ensembles of unannealed microparticles, the effect of their locking and dispersing in polymer is significantly weaker.  相似文献   

19.
We introduce a new definition of the energy spectrum of a nonstationary ensemble of pulses that reduces to the usual ones in the limit of statistically stationary ensembles of signals and of fully temporarily coherent ensembles.  相似文献   

20.
Since Gibbs synthesized a general equilibrium statistical ensemble theory, many theorists have attempted to generalized the Gibbsian theory to
non-equilibrium phenomena domain, however the status of the theory of non-equilibrium phenomena can not be said as firm as well established as the
Gibbsian ensemble theory. In this work, we present a framework for the non-equilibrium statistical ensemble formalism based on a subdynamic kinetic
equation (SKE) rooted from the Brussels-Austin school and followed by some up-to-date works. The constructed key is to use a similarity transformation between Gibbsian ensembles formalism based on Liouville equation and the subdynamic ensemble formalism based on the SKE. Using this formalism, we study the spin-Boson system, as cases of weak coupling or strongly coupling, and obtain the reduced density operators for the Canonical ensembles easily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号