首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
The main ideas and methods of calculations within the framework of the generating functional technique are considered in a systematical way. The nonequilibrium generating functionals are defined as functional mappings of the nonequilibrium statistical operator and so appear to be dependent on a certain set of macroscopic variables describing the nonequilibrium state of the system. The boundary conditions and the differential equation of motion for the generating functionals are considered which result in an explicit expression for the nonequilibrium generating functionals in terms of the so-called coarse-grained generating functional being the functional mapping of the quasiequilibrium statistical operator. Various types of integral equations are derived for the generating functionals which are convenient to develop the perturbation theories with respect to either small interaction or small density of particles. The master equation for the coarse-grained generating functionals is obtained and its connection with the generalized kinetic equations for a set of macrovariables is shown. The derivation of the generalized kinetic equations for some physical systems (classical and quantum systems of interacting particles, the Kondo system) is treated in detail, with due regard for the polarization effects as well as the energy and momentum exchange between the colliding particles and the surrounding media.  相似文献   

2.
A semiclassical stochastic trajectory (SST) approach to the sudy of collision induced transitions in gas molecule-solid surface scattering is presented. The time-dependent Schrödinger equation provides the time-evolution of the transition amplitudes for the molecular internal states. Classical mechanics is used to describe the molecule's center of mass motion as well as the surface atoms' motion — the latter through the generalized Langevin equation (GLE) method which allows the treatment of non-rigid surfaces (i.e. surface temperature effects). These quantum and classical equations of motion are coupled through the use of a time-dependent interaction potential in the Schrödinger equation and the use of the expectation value of the interaction potential in the classical equations of motion. Advantages of the SST approach include: (1) flexibility in the choice of quantum versus classical coordinates; (c) strict energy conservation for non-dissipative system; and (3) realistic treatment of surface many-body effects within the GLE. The SST technique is applied to the study of vibrational and rotational inelasticity in a model H2Pt(111) system. As an initial test, results obtained assuming a rigid, smooth surface with an exponentially repulsive potential are compared to exact quantal and quasi-classical trajectory values to determine the accuracy and utility of the SST approach. A limited practical application is presented for the same H2Pt(111) system but for a non-rigid surface. These results, calculated at low gas kinetic energies, indicate that surface energy transfer and surface temperature effects should be minimal for this type of system, even though the energy gaps are quite similar for rotational and phonon degrees of freedom.  相似文献   

3.
The time-dependent Schrödinger equation is formulated within a model space by means of a finite set of coupled, linear differential equations. The basis is spanned by a set of orthogonal and well-defined many body wave-functions, which are solutions of a model Hamiltonian in a “moving frame”. As a by-product one is able to separate approximatively collective potential, collective kinetic, and intrinsic excitation energy for arbitrary collective motion. For the two types of motion discussed in greater details (i.e. center of mass and quadrupole motion), the expressions for the collective kinetic energy approach their correct asymptotic values.  相似文献   

4.
完整力学系统的高阶运动微分方程   总被引:11,自引:0,他引:11       下载免费PDF全文
张相武 《物理学报》2005,54(9):3978-3982
从质点系的牛顿动力学方程出发,引入系统的高阶速度能量,导出完整力学系统的高阶Lagrange方程、高阶Nielsen方程以及高阶Appell方程,并证明了完整系统三种形式的高阶运动微分方程是等价的.结果表明,完整系统高阶运动微分方程揭示了系统运动状态的改变与力的各阶变化率之间的联系,这是牛顿动力学方程以及传统分析力学方程不能直接反映的.因此,完整系统高阶运动微分方程是对牛顿动力学方程及传统Lagrange方程、Nielsen方程、Appell方程等二阶运动微分方程的进一步补充. 关键词: 高阶速度能量 高阶Lagrange方程 高阶 Nielsen方程 高阶Appell方程  相似文献   

5.
贾利群  孙现亭  张美玲  张耀宇  韩月林 《物理学报》2014,63(1):10201-010201
研究相对运动变质量完整系统Appell方程的广义Lie对称性及其直接导致的广义Hojman守恒量.在群的无限小变换下,给出相对运动变质量完整系统Appell方程广义Lie对称性的确定方程;得到相对运动变质量完整系统Appell方程广义Lie对称性直接导致的广义Hojman守恒量的表达式.最后,利用本文结果研究相对运动变质量完整约束的三自由度力学系统问题.  相似文献   

6.
A general kinetic equation for the differential density of fast particles moving in a medium in an external field is derived on the basis of the continuity equation in phase space. An equation is written for the differential flux in the case of fixed target particles. This equation is used to derive equations for fast electrons; account is taken of the coupling of energy-loss and scattering events in an electric field for various particular problems analogous to those studied in the theory of electron transport in the absence of a field. The kinetic equations are used to analyze the conditions governing accelerated motion of electrons in a dielectric in an external electric field in the continuous-deceleration approximation. Account is taken of fluctuations in the energy loss and of multiple scattering. There are two energy ranges of particles moving in a dielectric in which accelerated motion can occur; in the case of an electron beam with a continuous energy spectrum, this acceleration would be accompanied by monochromatization of the beam.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 7–12, February, 1972.  相似文献   

7.
《Physics letters. [Part B]》1988,209(4):430-433
The equations of motion for a nuclear fluid are transformed into an effective single-particle Schrödinger equation with self-interactions. This transformation is particularly useful for numerical applications, because the Weizsäcker corrections, which cause numerical instabilities in computationswithin the fluid-dynamical picture, are absorbed in the kinetic energy term of the effective Schrödinger equation. In applications to the motion and collision of nuclear slabs the numerical treatment of the nuclear fluid by the effective Schrödinger equation is proven to be stable and accurate.  相似文献   

8.
张美玲  孙现亭  王肖肖  解银丽  贾利群 《中国物理 B》2011,20(11):110202-110202
Lie symmetry and the generalized Hojman conserved quantity of Nielsen equations for a variable mass holonomic system of relative motion are studied. The determining equation of Lie symmetry of Nielsen equations for a variable mass holonomic system of relative motion under the infinitesimal transformations of groups is given. The expression of generalized Hojman conserved quantity deduced directly from Lie symmetry for a variable mass holonomic system of relative motion is obtained. An example is given to illustrate the application of the results.  相似文献   

9.
王勇  梅凤翔  曹会英  郭永新 《物理学报》2018,67(3):34501-034501
和Hamilton-Jacobi方法类似,Vujanovi?场方法把求解常微分方程组特解的问题转化为寻找一个一阶拟线性偏微分方程(基本偏微分方程)完全解的问题,但Vujanovi?场方法依赖于求出基本偏微分方程的完全解,而这通常是困难的,这就极大地限制了场方法的应用.本文将求解常微分方程组特解的Vujanovi?场方法改进为寻找动力学系统运动方程第一积分的场方法,并将这种方法应用于一阶线性非完整约束系统Riemann-Cartan位形空间运动方程的积分问题中.改进后的场方法指出,只要找到基本偏微分方程的包含m(m≤ n,n为基本偏微分方程中自变量的数目)个任意常数的解,就可以由此找到系统m个第一积分.特殊情况下,如果能够求出基本偏微分方程的完全解(完全解是m=n时的特例),那么就可以由此找到≤系统全部第一积分,从而完全确定系统的运动.Vujanovi?场方法等价于这种特殊情况.  相似文献   

10.
推导了非惯性系下的两个质点的相对运动方程及能量方程,并进行了推论,结果表明所得方程具有明确的物理意义;动力学方程可视为相对于质心系的牛顿第二定律,而能量方程则为质点系相对于质心系的动能定理。举例说明了所得结论在解决实际问题中具有的特点:处理问题简洁,应用范围广泛,较强的实用性等。  相似文献   

11.
A correlation function approach is developed to treat non-equilibrium phenomena of quantum crystals at low frequency and long wavelength within the renormalized harmonic approximation (RHA). The derivation of the transport equations is carried out by studying the hierarchy of equations of motion for the retarded Green's functions of a pure, nonprimitive, nonionic, anharmonic lattice. Using a factorization technique to take into account the most important terms due to the particle fluctuations and the leading contributions to the hydrodynamic singularities of the phonon self-energy, we find a differential equation for the displacement field and a generalized transport equation for the phonon gas. The microscopic RHA expressions for the local temperature, the local heat density and the energy current are derived; the quasiparticle parameters (elastic constants, generalized Grüneisen parameters, quasiparticle interaction) entering the equations of motion are shown to be consistent with the RHA. In the hydrodynamic regime the general equations are reduced to two coupled differential equations for the lattice deformations and for the local temperature. Then only the displacement-displacement, the displacement-energy density and the energy density-energy density correlation functions show macroscopic fluctuations; for these functions thermodynamical sum-rules are derived.  相似文献   

12.
《Surface science》1986,176(3):425-437
The semiclassical stochastic trajectory method is extended to the study of rotational and vibrational transitions for linear triatomic molecules colliding with non-rigid solid surfaces. Rotational and vibrational motion are treated by quantum mechanics, translational motion by classical mechanics, and surface atom motion by the classical generalized Langevin equation. Self-consistent coupling of all motions is enforced via Ehrenfest's theorem. Calculations of the kinetic energy and gas temperature dependence of trapping probabilities, vibrational relaxation probabilities and final vibrational state distributions are presented for the CO2-Ag(111) system at surface temperatures of 0 and 600 K. The trapping probabilities are greatly enhanced by the rotational motion and also vary to some degree with the initial vibrational state of the CO2. Total vibrationally inelastic probabilities are on the order of 10−2 for a single collision event with an initial state (00°1). For the initial state (0110) these are much larger, ~ 10−1, due to the nature of bending mode motion. In conjunction with the large trapping probabilities, the mechanism of vibration to vibration, rotation, translation, phonon energy transfer can provide vibration relaxation probabilities in the range of those measured experimentally. A pseudo-selection rule for conservation of vibrational angular momentum is found.  相似文献   

13.
The bending vibrational behaviour of a flexible rotor with a continuous mass distribution passing its critical speeds under a driving torque is considered. It is shown that the (non-linear) equations of motion for an actual shaft can be formally traced back to those of a Laval rotor. In this way, the results for a Laval rotor, which, in an earlier publication by the authors [1], have been presented generally for constant load torque can be applied to actual rotors. The system parameters of the Laval rotor merely have to be replaced by the generalized parameters of the respective bending modes. A special study shows that the effect of the torsional flexibility of the shaft on the bending vibrational behaviour is negligible.  相似文献   

14.
A calculation of nucleus-nucleus collisions is presented, using a model which starts from a TDHF equation and leads to classical equations of motion for a set of four collective variables. Restricting to axial symmetry and assuming the liquid drop mass formula to hold, a differential equation is derived, which describes nuclear deformations and energies and is used to construct a potential energy surface for the collective variables. The nuclear deformations are obtained without the need of shape parameters. The equations of motion for the collective variables are solved numerically.  相似文献   

15.
李彦敏  梅凤翔 《物理学报》2010,59(9):5930-5933
场方法和最终乘子法是求解运动微分方程的基本方法.本文将这两种方法应用于广义Birkhoff系统,求出了场方法的基本偏微分方程和该方程的完全积分;根据Jacobi最终乘子定理求出了广义Birkhoff方程的解.并举例说明结果的应用.  相似文献   

16.
金世欣  张毅 《中国物理 B》2017,26(1):14501-014501
The Routh and Whittaker methods of reduction for Lagrange system on time scales with nabla derivatives are studied.The equations of motion for Lagrange system on time scales are established, and their cyclic integrals and generalized energy integrals are given. The Routh functions and Whittaker functions of Lagrange system are constructed, and the order of differential equations of motion for the system are reduced by using the cyclic integrals or the generalized energy integrals with nabla derivatives. The results show that the reduced Routh equations and Whittaker equations hold the form of Lagrnage equations with nabla derivatives. Finally, two examples are given to illustrate the application of the results.  相似文献   

17.
We show from first principles the emergence of classical Boltzmann equations from relativistic nonequilibrium quantum field theory as described by the Kadanoff–Baym equations. Our method applies to a generic quantum field, coupled to a collection of background fields and sources, in a homogeneous and isotropic spacetime. The analysis is based on analytical solutions to the full Kadanoff–Baym equations, using the WKB approximation. This is in contrast to previous derivations of kinetic equations that rely on similar physical assumptions, but obtain approximate equations of motion from a gradient expansion in momentum space. We show that the system follows a generalized Boltzmann equation whenever the WKB approximation holds. The generalized Boltzmann equation, which includes off-shell transport, is valid far from equilibrium and in a time dependent background, such as the expanding universe.  相似文献   

18.
The free vibration of circular cylindrical thin shells, made up of uniform layers of isotropic or specially orthotropic materials, is studied using point collocation method and employing spline function approximations. The equations of motion for the shell are derived by extending Love's first approximation theory. Assuming the solution in a separable form a system of coupled differential equations, in the longitudinal, circumferential and transverse displacement functions, is obtained. These functions are approximated by Bickley-type splines of suitable orders. The process of point collocation with suitable boundary conditions results in a generalized eigenvalue problem from which the values of a frequency parameter and the corresponding mode shapes of vibration, for specified values of the other parameters, are obtained. Two types of boundary conditions and four types of layers are considered. The effect of neglecting the coupling between the flexural and extensional displacements is analysed. The influences of the relative layer thickness, a length parameter and a total thickness parameter on the frequencies are studied. Both axisymmetric and asymmetric vibrations are investigated. The effect of the circumferential node number on the vibrational behaviour of the shell is also analysed.  相似文献   

19.
The motion equations of diatomic molecules are here extended from the absolute vibrational case to a more general and real rotational and vibrational (rovibrational) case. The rovibrational Hamiltonian is heuristically formed by substituting the respective number and angular momentum operators for the vibrational and rotational quantum numbers in the energy eigenvalues of a diatomic molecule which was first introduced by Dunham. The motion equations of observable quantities such as the position and linear momentum are then determined by implementing the well-known Heisenberg relation in quantum mechanics. We face with the second-order imaginary differential equations for describing the temporal variations of the relative position and the linear momentum of two oscillating atoms, which are coupled in the xy horizontal plane. The possible rovibrational oscillations are distinguished by the three quantum numbers n, l and m associated with the energy and angular momentum quantities. It is finally demonstrated that the simultaneous solutions of rovibrational equations satisfy the energy conservation during all quantised oscillations of a diatomic molecule in space.  相似文献   

20.
A generalized Pauli master equation is established for describing the vibrational energy flow in a 1D lattice of hydrogen bounded peptide units. A Lang-Firsov transformation is applied so that the relevant excitations are small polarons corresponding to vibrational excitons dressed by virtual phonons. A special attention is thus paid to characterize the energy transfer mediated by two polarons. At biological temperature, it is shown that the polaron-phonon coupling is sufficiently strong to prevent any coherent motion. The polaron-polaron interaction occurring in such a nonlinear lattice does not affect the long time behavior of the energy flow which results from the diffusion of two independent polarons. This diffusive motion originates from the competition between two contributions related to phonon mediated transitions (incoherent contribution) and to dephasing limited coherent motion (coherent contribution).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号