首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A series of metal-free organic dyes with a core phenoxazine chromophore have been synthesized and tested as sensitizers in dye-sensitized solar cells. Overall conversion efficiencies of 6.03-7.40% were reached under standard AM 1.5G illumination at a light intensity of 100 mW cm(-2) . A clear trend in electron lifetime could be seen; a dye with a furan-conjugated linker showed a shorter lifetime relative to dyes with the acceptor group directly attached to the phenoxazine. The addition of an extra donor unit, which bore insulating alkoxyl chains, in the 7-position of the phenoxazine could increase the lifetime even further and, together with additives in the electrolyte to raise the conduction band, an open circuit voltage of 800 mV could be achieved. From photoelectron spectroscopy and X-ray absorption spectroscopy of the dyes adsorbed on TiO(2) particles, it can be concluded that the excitation is mainly of cyano character (i.e., on average, the dye molecules are standing on, and pointing out, from the surface of TiO(2) particles).  相似文献   

4.
5.
6.
The incorporation of gold nanoparticles (Au NPs) as quencher modules in fluorescent probes for DNA damage caused by intracellular hydroxyl radicals (HO*) is reported. Au NPs of 15 nm diameter were decorated with DNA oligomers terminating in thiol functions in their 3' positions and possessing 5' fluorophore modifications. The Au NPs, which have high extinction coefficients, functioned as excellent fluorescent quenchers in the fluorophore-Au NP composites. FRET is switched off as a factor of HO*-induced strand breakage in the single-stranded DNAs, restoring the fluorescence of the quenched fluorophores, which can be followed by spectrofluorimetry. In vitro assays with HO*-generating Fenton reagent demonstrated increases in fluorescence intensity with a linear range from 8.0 nM to 1.0 microM and a detection limit as low as 2.4 nM. Confocal microscopic imaging of macrophages and HepG2 revealed that the probe is cell-permeable and intracellular HO*-responsive. The unique combination of good selectivity and high sensitivity establishes the potential value of the probe for facilitating investigations of HO*-mediated cellular homeostasis and injury.  相似文献   

7.
8.
The use of F?rster or fluorescence resonance energy transfer (FRET) as a spectroscopic technique has been in practice for over 50 years. A search of ISI Web of Science with just the acronym "FRET" returns more than 2300 citations from various areas such as structural elucidation of biological molecules and their interactions, in vitro assays, in vivo monitoring in cellular research, nucleic acid analysis, signal transduction, light harvesting and metallic nanomaterials. The advent of new classes of fluorophores including nanocrystals, nanoparticles, polymers, and genetically encoded proteins, in conjunction with ever more sophisticated equipment, has been vital in this development. This review gives a critical overview of the major classes of fluorophore materials that may act as donor, acceptor, or both in a FRET configuration. We focus in particular on the benefits and limitations of these materials and their combinations, as well as the available methods of bioconjugation.  相似文献   

9.
Three novel organic dyes (DF13AC) carrying regioisomeric carboxypyridine anchoring groups were synthesized by means of a multistep synthetic sequence involving a Pd-catalyzed Stille coupling as the key step. The new compounds underwent full spectroscopic, electrochemical, and computational characterization, and their properties were compared with those of a reference compound endowed with a classic cyanoacrylic acid acceptor (DF15). Photovoltaic measurements showed that dye-sensitized solar cells built with dyes DF13AC as photosensitizers yielded power conversion efficiencies corresponding to 54–63% of those obtained with the reference compound. Determination of desorption pseudo-first order rate constants indicated that isomers DF13BC, having the nitrogen atom in neighboring position relative to the carboxylic moiety, were removed from TiO2 more slowly than isomer DF13A or cyanoacrylic derivative DF15, suggesting a possible cooperative effect of the two functional groups on semiconductor binding: such hypothesis was supported by device stability tests carried out on transparent, larger area cells.  相似文献   

10.
11.
A novel dihydrophenazine-based organic di-anchoring dye DK-11 was synthesized by utilizing a simple synthetic protocol. The dye was characterized by optical and electrochemical studies and used as a sensitizer for dye-sensitized solar cell. The proposed butterfly structure was supported by IR experiments which ensured the binding of both carboxylic acid units on the semiconductor surface. Using the dye DK-11 , the device generated an efficiency of 5.07% with JSC, VOC, and FF values of 10.65 mA/cm2, 0.67 V, and 0.71, respectively.  相似文献   

12.
13.
14.
New heteroleptic ruthenium complexes have been synthesized and used as the sensitizers for dye‐sensitized solar cells (DSSCs). The ancillary bipyridine ligand contains rigid aromatic segments (fluorene‐, carbazole‐, or dithieno[3,2‐b:2′,3′‐d]pyrrole‐substituted bipyridine) tethered with a hydrophobic hexyl substituent. The conjugated aromatic segment results in significant bathochromic shift and hyperchromic effects in these complexes compared with Z907 (cis‐[Ru LL′ (NCS)2]; L =4,4′‐dicarboxylic acid‐2,2′‐bipyridine, L′ =4,4′‐dinonyl‐2,2′‐ bipyridine). The long hydrocarbon chains help to suppress the dark current if appropriately disposed. DSSCs that use these complexes exhibit very impressive conversion efficiencies (5.94 to 6.91 %) that surpass that of Z907 ‐based (6.36 %) DSSCs and are comparable with that of N719 ‐based standard cells (7.13 %; N719 =cis‐di(thiocyanato)bis(2,2′‐bipyridyl‐4,4′‐dicarboxylato)ruthenium(II) bis(tetrabutylammonium)) fabricated and measured under similar conditions (active area: 0.5×0.5 cm2; AM 1.5 sunlight).  相似文献   

15.
16.
17.
A new type of carbene‐based ruthenium sensitizer, CB104, with a highly conjugated ancillary ligand, diphenylvinylthiophene‐substituted benzimidazolepyridine, was designed and developed for dye‐sensitized solar cell applications. The influence of the thiophene antenna on the performance of the cell anchored with CB104 was investigated. Compared with the dye CBTR, the conjugated thiophene in the ancillary ligand of CB104 enhanced the molar extinction coefficient of the intraligand π–π* transition and the intensity of the lower energy metal‐to‐ligand charge‐transfer band. However, the incident photon‐to‐current conversion efficiency spectrum of the cell anchored with CB104 (0.15 mM ) showed a maximum of 63 % at 420 nm. The cell sensitized with the dye CB104 attained a power conversion efficiency of 7.30 %, which was lower than that of the cell with nonconjugated sensitizer CBTR (8.92 %) under the same fabrication conditions. The variation in the performance of these two dyes demonstrated that elongating the conjugated light‐harvesting antenna resulted in the reduction of short‐circuit photocurrent density, which might have been due to the aggregation of dye molecules. In the presence of a coabsorbate, chenodeoxycholic acid, the CB104‐sensitized cell exhibited an enhanced photocurrent density and achieved a photovoltaic efficiency of 8.36 %.  相似文献   

18.
A new, extremely simple concept for the use of energy transfer as a means to the enhancement of light absorption and current generation in the dye solar cell (DSC) is presented. This model study is based upon a carboxy‐functionalized 4‐aminonaphthalimide dye (carboxy‐fluorol) as donor, and (NBu4)2[Ru(dcbpy)2(NCS)2] (N719) as acceptor chromophores. A set of three different devices is assembled containing either exclusively carboxy‐fluorol or N719, or a mixture of both. This set of transparent devices is characterized via IV‐measurements under AM1.5G and monochromatic illumination and their light‐harvesting and external quantum efficiencies (LHE and EQE, respectively) are determined as well. It is shown that the device containing only the donor chromophore has a marginal power conversion efficiency, thus indicating that carboxy‐fluorol is a poor sensitizer for the DSC. Cyclovoltametric measurements show that the poor sensitization ability arises from the kinetic inhibition of electron injection into the TiO2 conduction band. Comparing the spectral properties of the DSCs assembled presently, however, demonstrates that light absorbed by carboxy‐fluorol is almost quantitatively contributing to the photocurrent if N719 is present as an additional sensitizer. In this case, N719 acts as a catalyst for the sensitization of TiO2 by carboxy‐fluorol in addition to being a photosensitizer. Evaluation of the maximum output power under blue illumination shows that the introduction of an energy‐donor moiety via coadsorption, leads to a significant increase in the monochromatic maximum output power. This result demonstrates that energy transfer between coadsorbed chromophores could be useful for the generation of current in dye‐sensitized solar cells.  相似文献   

19.
In this study, we prepared thiophene-(N-aryl)pyrrole-thiophene (TPT)-based two new metal-free organic sensitizers (TPTDYE 2 and TPTDYE 3) with the aim of improving the dye-sensitized solar cell (DSSC) performance of recently reported TPT-based organic sensitizer (TPTDYE 1). The molecular structure of TPTDYE 1 was tuned by decreasing the distance between the donor and acceptor groups (TPTDYE 2) or by introducing a fluoride atom on the phenyl ring near to the electron accepting cyanoacrylic acid group (TPTDYE 3). The photophysical and electrochemical studies of the newly synthesized sensitizers revealed that their absorption and energy levels were significantly altered compared to those of TPTDYE 1. The DSSC performance of each of sensitizers TPTDYE 2 and TPTDYE 3 was investigated with and without coadsorbent and compared with those of TPTDYE 1 and standard N719. Between the two DSSCs, the one sensitized by TPTDYE 2 offered greatly improved solar to electrical energy conversion efficiency of 6.85% without coadsorbent and 7.06% with coadsorbent. The overall conversion efficiency of the DSSC sensitized by TPTDYE 2 without and with coadsorbent was found to be improved by 32% and 20%, respectively, compared with that of the DSSC sensitized by TPTDYE 1 and almost equal (98.7%) to that of the standard cell prepared from N719 under an identical condition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号