首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
We give an overview on recent developments in high-throughput microfluidic sample-introduction techniques based on a capillary sampling probe and a slotted-vial array (SVA). We discuss the advantages and the potential of SVA-based sample-introduction systems as well as their applications in miniaturized flow-injection analysis, sequential-injection analysis, capillary electrophoresis and liquid-liquid extraction. We illustrate the advantages and the potential of SVA-based sample-introduction systems using results obtained recently.  相似文献   

2.
Zheng C  Wang J  Pang Y  Wang J  Li W  Ge Z  Huang Y 《Lab on a chip》2012,12(14):2487-2490
We have developed an integrated microfluidic immunoassay chip for high-throughput sandwich immunoassay tests. The chip creates an array of reactive patterns through mechanical protection by actuating monolithically embedded button valves. We have demonstrated that this chip can achieve highly sensitive immunoassay tests within an hour, and requires only microliter samples.  相似文献   

3.
High-throughput rheology in a microfluidic device   总被引:2,自引:0,他引:2  
Schultz KM  Furst EM 《Lab on a chip》2011,11(22):3802-3809
High-throughput rheological measurements in a microfluidic device are demonstrated. A series of microrheology samples are generated as droplets in an immiscible spacer fluid using a microfluidic T-junction. The compositions of the sample droplets are continuously varied over a wide range. Rheology measurements are made in each droplet using multiple particle tracking microrheology. We review critical design and operating parameters, including the droplet size, flow rates and rapid fabrication methods. Validation experiments are performed by measuring the solution viscosity of glycerine and the biopolymer heparin as a function of concentration. Overall, the combination of microrheology with microfluidics maximizes the number of rheological measurements while simultaneously minimizing the sample preparation time and amount of material, and should be particularly suited to the characterization of scarce or expensive materials.  相似文献   

4.
Electrochemical sensing has established a strong presence in diverse areas. The conventional electrochemical sensing approach consumes large sample volumes and reagents and requires bulky potentiostat, macro-electrodes, and other equipment. The synergistic integration of electrochemical sensing systems with miniaturized or microfluidic electrochemical devices and microelectrodes in a single platform provides rapid analysis with a disposable, reusable, and cost-effective platform for multiplexed point-of-care detections. Such microdevices have created scope for using several materials as electrodes and sensing platforms by using appropriate fabrication techniques. One of the most recent advancements in miniaturized devices includes the integration of automation and Internet of Things to realize fully automated and robust electrochemical microdevices. The review summarizes the emerging trends in fabrication methods of miniaturized and microfluidic devices, their multiple applications in real-time, integration of Internet of Things, automation, identifying research gaps with strategies for bridging these gaps, future outlook, and recent approaches to intelligent electrochemical sensing.  相似文献   

5.
Chung TD  Kim HC 《Electrophoresis》2007,28(24):4511-4520
This article provides an overview of recent research achievements in miniaturized flow cytometry. The review focuses on chip-based microfluidic flow cytometers, classified by cell transport method, detection technology, and biomedical application. By harnessing numerous ideas and cutting-edge microfabrication technologies, microfluidic flow cytometry benefits from ever-increasing functionalities and the performance levels achieved make it an attractive biomedical research and clinical tool. In this article, we briefly describe an update of recent developments that combine novel microfluidic characteristics and flow cytometry on chips that meet biomedical needs.  相似文献   

6.
Double emulsions are useful templates for microcapsules and complex particles, but no method yet exists for making double emulsions with both high uniformity and high throughput. We present a parallel numbering-up design for microfluidic double emulsion devices, which combines the excellent control of microfluidics with throughput suitable for mass production. We demonstrate the design with devices incorporating up to 15 dropmaker units in a two-dimensional or three-dimensional array, producing single-core double emulsion drops at rates over 1 kg day(-1) and with diameter variation less than 6%. This design provides a route to integrating hundreds of dropmakers or more in a single chip, facilitating industrial-scale production rates of many tons per year.  相似文献   

7.
In this work a portable microfluidic device with a reusable integrated high voltage power supply is presented, which allows for quick exchange of inexpensive disposable poly(dimethylsiloxane)(PDMS) microfluidic chips on a carrier only slightly larger than a microscope slide. The device is powered by an onboard MN21 cell battery (5 mm radius, 30 mm long) and is demonstrated through the rapid and controlled transport of a fluorescent dye through an expansion chamber geometry. Power consumption experiments demonstrate the device's ability to complete over 40 dispense-flushing cycles on a single battery.  相似文献   

8.
A simple and sensitive on-chip preconcentration, separation, and electrochemical detection (ED) method for the electrophoretic analysis of food dyes was developed. The microchip comprised of three parallel channels: the first two are for the field-amplified sample stacking (FASS) and subsequent field-amplified sample injection (FASI) steps, while the third one is for the micellar EKC with ED (MEKC-ED) step. The food dyes were initially extracted from real samples by employing a method that was simpler, easier, and faster compared with a standard method. The extraction of the samples was characterized by UV-Vis and electrochemical experiments. The chronoamperometric detection was performed with a glassy carbon electrode coupled horizontally with the microchip at the separation channel exit. Experimental parameters affecting the analytical performance of the method were assessed and optimized. The sensitivity of the method was improved by approximately 10,800-fold when compared with a conventional MEKC-ED analysis. Reproducible response was observed during multiple injections of samples with an RSD of <7.2% (n=5). The calibration plots were linear (r2=0.998) within the range of 1.0 nM-1.0 microM for all food dyes. LODs were estimated between 1.0 and 5.0 nM, based on S/N=3, for food dyes. The applicability of the method for the analysis of food dyes in real sample was demonstrated.  相似文献   

9.
In this paper we report on the controlled biofunctionalization of the hydrophobic layer of electrowetting-on-dielectric (EWOD) based microfluidic chips with the aim to execute (adherent) cell-based assays. The biofunctionalization technique involves a dry lift-off method with an easy to remove Parylene-C mask and allows the creation of spatially controlled micropatches of biomolecules in the Teflon-AF(?) layer of the chip. Compared to conventional methods, this method (i) is fully biocompatible; and (ii) leaves the hydrophobicity of the chip surface unaffected by the fabrication process, which is a crucial feature for digital microfluidic chips. In addition, full control of the geometry and the dimensions of the micropatches is achieved, allowing cells to be arrayed as cell clusters or as single cells on the digital microfluidic chip surface. The dry Parylene-C lift-off technique proves to have great potential for precise biofunctionalization of digital microfluidic chips, and can enhance their use for heterogeneous bio-assays that are of interest in various biomedical applications.  相似文献   

10.
We use microfluidic chips to detect the biologically important cytokine tumor necrosis factor alpha (TNF- alpha) with picomolar sensitivity using sub-microliter volumes of samples and reagents. The chips comprise a number of independent capillary systems (CSs), each of which is composed of a filling port, an appended microchannel, and a capillary pump. Each CS fills spontaneously by capillary forces and includes a self-regulating mechanism that prevents adventitious drainage of the microchannels. Thus, interactive control of the flow in each CS is easily achieved via collective control of the evaporation in all CSs by means of two Peltier elements that can independently heat and cool. Long incubation times are crucial for high sensitivity assays and can be conveniently obtained by adjusting the evaporation rate to have low flow rates of approximately 30 nL min(-1). The assay is a sandwich fluorescence immunoassay and takes place on the surface of a poly(dimethylsiloxane)(PDMS) slab placed across the microchannels. We precoat PDMS with capture antibodies (Abs), localize the capture of analyte molecules using a chip, then bind the captured analyte molecules with fluorescently-tagged detection Abs using a second chip. The assay results in a mosaic of fluorescence signals on the PDMS surface which are measured using a fluorescence scanner. We show that PDMS is a compatible material for high sensitivity fluorescence assays, provided that detection antibodies with long excitation wavelength fluorophores ( > or =580 nm) are employed. The chip design, long incubation times, proper choice of fluorophores, and optimization of the detection Ab concentration all combine to achieve high-sensitivity assays. This is exemplified by an experiment with 170 assay sites, occupying an area of approximately 0.6 mm(2) on PDMS to detect TNF-alpha in 600 nL of a dendritic cell (DC) culture medium with a sensitivity of approximately 20 pg mL(-1)(1.14 pM).  相似文献   

11.
12.
BACKGROUND: Fully adapting a forward genetic approach to mammalian systems requires efficient methods to alter systematically gene products without prior knowledge of gene sequences, while allowing for the subsequent characterization of these alterations. Ideally, these methods would also allow function to be altered in a temporally controlled manner. RESULTS: We report the development of a miniaturized cell-based assay format that enables a genetic-like approach to understanding cellular pathways in mammalian systems using small molecules, rather than mutations, as the source of gene-product alterations. This whole-cell immunodetection assay can sensitively detect changes in specific cellular macromolecules in high-density arrays of mammalian cells. Furthermore, it is compatible with screening large numbers of small molecules in nanoliter to microliter culture volumes. We refer to this assay format as a 'cytoblot', and demonstrate the use of cytoblotting to monitor biosynthetic processes such as DNA synthesis, and post-translational processes such as acetylation and phosphorylation. Finally, we demonstrate the applicability of these assays to natural-product screening through the identification of marine sponge extracts exhibiting genotype-specific inhibition of 5-bromodeoxyuridine incorporation and suppression of the anti-proliferative effect of rapamycin. CONCLUSIONS: We show that cytoblots can be used for high-throughput screening of small molecules in cell-based assays. Together with small-molecule libraries, the cytoblot assay can be used to perform chemical genetic screens analogous to those used in classical genetics and thus should be applicable to understanding a wide variety of cellular processes, especially those involving post-transitional modifications.  相似文献   

13.
A palmtop-sized microfluidic cell culture system is presented. The system consists of a microfluidic device and a miniaturized infusion pump that possesses a reservoir of culture medium, an electrical control circuit, and an internal battery. The footprint of the system was downsized to 87 × 57 mm, which is, to the best of our knowledge, the smallest integrated cell culture system. Immortalized human microvascular endothelial cells (HMEC-1) and human umbilical vein endothelial cells (HUVEC) were cultured in the system. HMEC-1 in the system proliferated at the same speed as cells in a microchannel perfused by a syringe pump and cells in a culture flask. HUVEC in the system oriented along the direction of the fluid flow. Claudin-5, a tight junction protein, was localized along the peripheries of the HUVEC. We expect that the present system is applicable to various cell types as a stand-alone and easy-to-use system for microfluidic bioanalysis.  相似文献   

14.
Time-lapse live cell imaging is a powerful tool for studying signaling network dynamics and complexity and is uniquely suited to single cell studies of response dynamics, noise, and heritable differences. Although conventional imaging formats have the temporal and spatial resolution needed for such studies, they do not provide the simultaneous advantages of cell tracking, experimental throughput, and precise chemical control. This is particularly problematic for system-level studies using non-adherent model organisms such as yeast, where the motion of cells complicates tracking and where large-scale analysis under a variety of genetic and chemical perturbations is desired. We present here a high-throughput microfluidic imaging system capable of tracking single cells over multiple generations in 128 simultaneous experiments with programmable and precise chemical control. High-resolution imaging and robust cell tracking are achieved through immobilization of yeast cells using a combination of mechanical clamping and polymerization in an agarose gel. The channel and valve architecture of our device allows for the formation of a matrix of 128 integrated agarose gel pads, each allowing for an independent imaging experiment with fully programmable medium exchange via diffusion. We demonstrate our system in the combinatorial and quantitative analysis of the yeast pheromone signaling response across 8 genotypes and 16 conditions, and show that lineage-dependent effects contribute to observed variability at stimulation conditions near the critical threshold for cellular decision making.  相似文献   

15.
Basant Giri  Debashis Dutta 《Electrophoresis》2022,43(13-14):1399-1407
We have previously reported a novel approach to implementing multiplex enzyme-linked immunosorbent assay (ELISA) in connected microchannels by exploiting the slow diffusion of the enzyme reaction product across the different assay segments. This work builds on that report by implementing the noted assay in segments arranged along the circumference of a circular channel layout to reduce the footprint size and sample volume requirement. Using the current design, a 5-plex cytokine ELISA was demonstrated in a 1.5 × 1.5-cm region, which corresponded to a reduction in the footprint area by about a factor of 3 compared to that reported in our previous study. Additionally, the selective coating of our assay segments with the target molecules was realized in this work using electroosmosis instead of hydrodynamic flow as was the case in the previous report. This aspect of our experimental design is particularly significant as it permits the use of cross-sectional channel dimensions significantly shorter than those employed in the current work. Moreover, the use of an electric field for coating purposes enables the integration of functionalities such as electrokinetic preconcentration of analyte molecules during the sample incubation period that can further enhance the capabilities of our assay method.  相似文献   

16.
In this article, we demonstrate a novel approach to implementing multiplex enzyme-linked immunosorbent assay (ELISA) in a single microfluidic channel by exploiting the slow diffusion of the soluble enzyme reaction product across the different assay segments. The functionality of the reported device is realized by creating an array of ELISA regions within a straight conduit that are selectively patterned with chosen antibodies/antigens via a flow-based method. The different analytes are then captured in their respective assay segments by incubating a 5-μL aliquot of sample in the analysis channel for an hour under flow conditions. Once the ELISA surfaces have been prepared and the enzyme substrate introduced into the analysis channel, it is observed that the concentration of the soluble enzyme reaction product (resorufin) at the center of each assay region grows linearly with time. Further, the rate of resorufin generation at these locations is found to be proportional to the concentration of the analyte being assayed in that segment provided that the ELISA reaction time in the system (τ R ) is kept much shorter than that required by the resorufin molecules to diffuse across an assay segment (τ D ). Under the operating condition τ R  << τ D , the reported device has been shown to have a 35% lower limit of detection for the target analyte concentration compared with that on a commercial microtiter plate using only a twentieth of the sample volume.  相似文献   

17.
Chiral separations facilitated using microchip devices are reviewed in this paper. The first research paper on this topic was published in 1999. It was seen that analysis times are greatly reduced compared with more conventional techniques such as liquid chromatography and capillary electrophoresis, and that these devices enable the separation of chiral molecules. Method optimization can be conducted in a rather easy manner, reducing the total method development time. Finally, minute amounts of sample and buffer are used during analysis, which makes the systems ultra-economical. Although the number of applications in the chiral separation field on these miniaturized systems is still rather limited, they exhibit much potential towards high-throughput screening. Some efforts are, however, still needed regarding detection modes, because derivatisation of the samples is often needed to enable their detection.  相似文献   

18.
The design, fabrication, and characterization of microfluidic channel flow devices for in situ simultaneous hydrodynamic electrochemical ESR is reported. The microelectrochemical reactors consist of gold film electrodes situated within rectangular ducts of height 350 microm and widths in the range 500-2000 microm. The small dimensions of the channels result in minimal dielectric loss when centralized within a cylindrical TE011 resonant cavity, leading to a high level of sensitivity. This is demonstrated by using the one-electron oxidation of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) in acetonitrile as a model system, wherein the ESR spectra obtained for the corresponding stable radical cation are of a high signal-to-noise ratio. Signal intensity is measured as a function of flow rate for this system, and the behavior is validated by means of 3-dimensional numerical modeling of the hydrodynamic flow profile.  相似文献   

19.
In this work, a simple, flexible and low-cost sample-introduction technique was developed and integrated with droplet platform. The sample-introduction strategy was realized based on connecting the components of positive pressure input device, sample container and microfluidic chip through the tygon tubing with homemade polydimethylsiloxane (PDMS) adaptor, so the sample was delivered into the microchip from the sample container under the driving of positive pressure. This sample-introduction technique is so robust and compatible that could be integrated with T-junction, flow-focus or valve-assisted droplet microchips. By choosing the PDMS adaptor with proper dimension, the microchip could be flexibly equipped with various types of familiar sample containers, makes the sampling more straightforward without trivial sample transfer or loading. And the convenient sample changing was easily achieved by positioning the adaptor from one sample container to another. Benefiting from the proposed technique, the time-dependent concentration gradient was generated and applied for quantum dot (QD)-based fluorescence barcoding within droplet chip. High-throughput droplet screening was preliminarily demonstrated through the investigation of the quenching efficiency of ruthenium complex to the fluorescence of QD. More importantly, multiplex DNA assay was successfully carried out in the integrated system, which shows the practicability and potentials in high-throughput biosensing.  相似文献   

20.
Miniaturized channel filters are in high demand for many applications such as photonic integrated circuits, information-based technology, and platforms for investigation of light–matter interactions.Recently, several photonic schemes have been proposed to achieve nanofilters, which require sophisticated growth techniques. Here, we have fabricated microdisk whispering-gallery-mode(WGM) resonators through controlled assembly of organic materials with an emulsion-solventevaporation method. Based on this emulsion assembly method, the diameters of microdisks can be easily controlled, and more importantly, a microwire-disk interconnected structure is able to be constructed via one-step assembly. This microwire-waveguide-connected microdisk heterostructure can be utilized as a channel drop filter. Our results have demonstrated a facile way to achieve flexible WGM-based photonic components which can be integrated with other functional devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号