首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different kinds of highly ordered patterns of NaYF(4):Yb,Er nanoparticles on gold substrates were fabricated using a simple method combining micro-contact printing and "breath figures" techniques. Ordered arrays of water droplets were first formed in the hydrophilic regions of patterned self-assembled monolayers (SAMs). This was subsequently submerged in a chloroform solution of NaYF(4):Yb,Er nanoparticles. The particles were spontaneously assembled at the interface of chloroform/water droplet surface, leading to different kinds of uniform patterns after solvent evaporation. The structures of NaYF(4):Yb,Er particles patterns depended on the dimension of the substrate, the concentration of the NaYF(4):Yb,Er nanoparticles and the water condensation process.  相似文献   

2.
Currently, highly luminescent colloidal upconversion nanoparticles (UCNPs) have expanded an increasing interest of researchers because of their facilitating lability in the biomedical/clinical field. In this study, NaYF4:Yb,Er UCNPs are prepared by eco-friendly metal complexation-based thermal decomposition method at a lower temperature in aqueous media. The phase structure, crystallinity, phase purity, morphology, colloidal dispersibility, surface structure, surface charge, and optical and luminescent properties were evaluated carefully by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive x-ray analysis (EDX), Thermogravimetric analysis (TGA), zeta potential, Fourier transform infrared (FTIR), UV/visible and photoluminescent spectroscopic techniques. XRD pattern shows a pure single-phase cubic structure with an average grain size of 30–35 nm. TEM and SEM micrographs exhibited irregularly shaped spherical morphologies, porous surface structures highly aggregated UCNPs with the narrow-size distribution. Positive zeta potential has shown value signifying high absorption in the visible region which indicates particle's good colloidal stability in aqueous media. Under NIR-laser light excitation, the UCNPs emit strong UC emission transitions in the visible region. A broad infrared absorption peak of hydroxyl groups (–OH) in FTIR spectrum and mass loss at a lower temperature in TGA verified the surface functionality of UCNPs, with high colloidal stability, and excellent biocompatibility in aqueous media. In terms of their surface characteristics and high luminescent properties, the NaYF4:Yb,Er UCNPs could be interestingly applied in tagging of biomolecules, drug delivery, proteins labeling, and therapeutic and thermostats applications.  相似文献   

3.
Yb3+-doped MnCl2 and MnBr2 crystals exhibit strong red upconversion luminescence under near-infrared excitation around 10 000 cm(-1) at temperatures below 100 K. The broad red luminescence band is centred around 15 200 cm(-1) for both compounds and identified as the Mn2+ 4T1g-->6A1g transition. Excitation with 10 ns pulses indicates that the upconversion process consists of a sequence of ground-state and excited-state absorption steps. The experimental VIS/NIR photon ratio at 12 K for an excitation power of 191 mW focused on the sample with a 53 mm lens is 4.1% for MnCl2:Yb3+ and 1.2% for MnBr2:Yb3+. An upconversion mechanism based on exchange coupled Yb3+-Mn2+ ions is proposed. Similar upconversion properties have been reported for RbMnCl3:Yb3+, CsMnCl3:Yb3+, CsMnBr3:Yb3+, RbMnBr3:Yb3+, Rb2MnCl4:Yb3+. The efficiency of the upconversion process in these compounds is strongly dependent on the connectivity between the Yb3+ and Mn2+ ions. The VIS/NIR photon ratio decreases by three orders of magnitude along the series of corner-sharing Yb3+-Cl--Mn2+, edge-sharing Yb3+-(Cl-)2-Mn2+ to face-sharing Yb3+-(Br-)3-Mn2+ bridging geometry. This trend is discussed in terms of the dependence of the relevant super-exchange pathways on the Yb(3+)-Mn2+ bridging geometry.  相似文献   

4.
采用溶剂热法制备了不同Mn~(2+)掺杂量的NaBiF_4∶Yb/Er/Mn上转换发光体系,研究了其形貌、晶相、上转换发光性能随Mn~(2+)掺杂量的变化,并探讨了该体系的能量传递机理.实验结果表明,Mn~(2+)的掺杂不会引起NaBiF_4从六方相转变为立方相,但会增大其尺寸;同时在NaBiF_4体系中,Mn~(2+)可以与Er~(3+)进行能量传递,使红光发射得到增强,并且随着Mn~(2+)浓度的增加,红/绿光发射强度比也会随之增大.此外,还考察了NaBiF_4∶Yb/Er/Mn体系的变温发射光谱,发现当温度升高时,红/绿光强度比以及520 nm绿光与540 nm绿光发射强度比都总体上呈增大趋势.  相似文献   

5.
Upconversion core/shell nanocrystals with different mean sizes ranging from 15 to 45 nm were prepared via a modified synthesis procedure based on anhydrous rare‐earth acetates. All particles consist of a core of NaYF4:Yb,Er, doped with 18 % Yb3+ and 2 % Er3+, and an inert shell of NaYF4, with the shell thickness being equal to the radius of the core particle. Absolute measurements of the photoluminescence quantum yield at a series of different excitation power densities show that the quantum yield of 45 nm core/shell particles is already very close to the quantum yield of microcrystalline upconversion phosphor powder. Smaller core/shell particles prepared by the same method show only a moderate decrease in quantum yield. The quantum yield of 15 nm core/shell particles, for instance, is reduced by a factor of three compared to the bulk upconversion phosphor at high power densities (100 W cm?2) and by approximately a factor of 10 at low power densities (1 W cm?2).  相似文献   

6.
7.
贾若琨  杨珊  李翠霞  闫永楠  白玉白 《化学学报》2008,66(21):2439-2444
采用丙三醇液相结晶法制备了NaYF4∶Er3+, Yb3+上转换纳米晶, 合成步骤被简化. 常温下, 用980 nm的红外激光激发可以观察到很强的绿光、红光发射, 用荧光光谱仪记录了该上转换光谱. X射线粉末衍射(XRD)结果表明, 该方法制备NaYF4∶Er3+, Yb3+纳米晶属于立方混合六方晶系. 研究了纳米晶的上转换发光机理, 根据晶体场理论对Er3+的两个上转换能级进行了Stark分裂计算, 对两个能级之间的谱线进行了归属, 进一步证实了980 nm光子激发Er3+离子的上转换机理, 一个是连续吸收两个980 nm光子的过程(激发态吸收), 另一个是吸收980 nm光子后, 电子转移到亚稳态能级, 然后再吸收980 nm光子过程(能量转移上转换).  相似文献   

8.
综述了六方相NaYF4:Yb/Er纳米晶的制备方法,着重总结了三氟乙酸盐热分解法、共沉淀法、碳酸盐热分解法、离子热法、水热法及两步法的研究进展,并就其发展前景进行了展望.  相似文献   

9.
This work reports the novel microwave-assisted solvothermal synthesis and structural, topographic, spectroscopic characterization of NaYF(4):Yb,Er upconversion nanoparticles (UCNPs) as well as their application in the labeling of HeLa cells. The nanoparticles were prepared in ethylene glycol, with rare earth acetates as precursor and NH(4)F and NaCl as the fluorine and sodium sources. X-ray diffraction, transmission electron microscopy, and luminescence spectroscopy were applied to characterize the nanoparticles. Experimental results showed that the microwave-assisted solvothermal method is an effective approach to create highly crystalline, strongly luminescent UCNPs at a lower temperature (160 °C) and within a significantly shortened reaction time (only 1 h) compared to the traditional methods. The effect of fluorine source on the optical properties of UCNPs was investigated by using NH(4)F, NH(4)HF(2), NaF, and 1-butyl-3-methylimidazolium tetrafluoroborate (BmimBF(4)) as different fluorine sources; NH(4)F proved to be the best one, making the luminescent intensity increase at least 2 orders of magnitude. The UCNPs with four different colors (green, yellow, orange, and cyan) were successfully obtained. After being modified with amino groups and coupled with CEA-8 antibody, the obtained nanoparticles were successfully applied in the specific fluorescent immunolabeling and imaging of HeLa cells to further verify their function as a marker in immunolabeling.  相似文献   

10.
Microspherical bismuth oxychloride (BiOCl) can only utilize ultraviolet (UV) light to promote photocatalytic reactions. To overcome this limitation, a uniform and thin BiOCl nanosheet was synthesized with a particle size of about 200 nm. As results of UV–visible diffuse reflectance spectroscopy showed, the band gap of this nanostructure was reduced to 2.78 eV, indicating that the BiOCl nanosheet could absorb and utilize visible light. Furthermore, the upconversion material NaYF4 doped with rare earth ions Yb3+ and Er3+ emitted visible light at 410 nm following excitation with near‐infrared (NIR) light (980 nm), which could be utilized by BiOCl to produce a photocatalytic reaction. To produce a high‐efficiency photocatalyst (NaYF4:Yb3+,Er3+@BiOCl), BiOCl‐loaded NaYF4:Yb3+,Er3+ was successfully synthesized via a simple two‐step hydrothermal method. The as‐synthesized material was confirmed using X‐ray diffraction, scanning electron microscopy, X‐ray photoelectron spectroscopy as well as other characterizations. The removal ratio of methylene blue by NaYF4:Yb3+,Er3+@BiOCl was much higher than that of BiOCl alone. Recycling experiments verified the stability of NaYF4:Yb3+,Er3+@BiOCl, which demonstrated excellent adsorption, strong visible‐light absorption and high electron–hole separation efficiency. Such properties are expected to be useful in practical applications, and a further understanding of the NIR‐light‐responsive photocatalytic mechanism of this new catalytic material would be conducive to improving its structural design and function.  相似文献   

11.
Based on NaYF4:Yb3+, Er3+ upconversion nanocrystals as donor and 4-((4-(2-aminoethylamino)naphthalen-1-yl)diazenyl) benzenesulfonic acid dihydrochloride (ANDBS) as acceptor, an efficient luminescence energy transfer (LET) system was developed for selective and sensitive determination of trace amounts of nitrite. Based on Griess Reaction, ANDBS was generated by the quantitative reaction of nitrite, sulfanilamide and N-(1-naphtyl)-ethylenediamine dihydrochloride (N1NED). The degree of the overlaps between the emission spectrum of NaYF4:Yb3+, Er3+ and the absorption spectrum of ANDBS were effective for luminescence energy transfer. Under the optimal condition, the upconversion luminescence quenching of NaYF4:Yb3+, Er3+ was in proportion to the trace amounts of nitrite. The detection limit for nitrite achieved is 0.0046 μg mL?1 and the system shows high sensitivity towards nitrite at 0.008000–0.2500 μg mL?1 range.  相似文献   

12.
《印度化学会志》2023,100(5):100990
The emerging upconversion nanoparticles (UCNP) have gained substantial consideration in the field of bioanalytical as well as diagnostic applications. Therefore, great progress has been made in the synthesis and surface modification of luminescent UCNPs over the last two decades. In this paper, we have reported monodispersed and high luminescent upconversion nanoparticles NaYF4: 20%Yb3+, 2%Tm3+ have been synthesized using a solvothermal method, followed by a coating of the NaYF4 shell with a thin layer of SiO2 on the surface to afford the core-shell NaYF4:Yb3+, Tm3+@SiO2 nanoparticles (NP@SiO2). The prepared nanoparticles were of strong upconversion fluorescent emission intensity, hexagonal phase, and with an average size of about 8 ± 1 nm, which have been characterized by luminescence spectroscopy, powder X-ray diffraction (P-XRD), Dynamic light scattering (DLS), and Transmission electron microscopy (TEM). The results indicate that the NP@SiO2 can be used for the conjugation of fluorescent probes for various biomolecules and can find applications in cancer cell imaging and disease diagnosis.  相似文献   

13.
14.
To develop NaYF(4) as bulk luminescence material, transparent glass ceramics containing Er(3+): NaYF(4) nanocrystals were fabricated for the first time, and the influences of heat-treatment temperature and Er(3+) doping level on their upconversion luminescence were investigated. With increasing heating temperature, the upconversion intensity enhanced accordingly, attributing to the incorporation of more Er(3+) into the grown NaYF(4). Notably, when the heating temperature reached 650 degrees C, the upconversion intensity augmented drastically due to the occurrence of phase transition from the cubic NaYF(4) to the hexagonal one. Interestingly, for the samples heat-treated at 620 degrees C, when the Er(3+) doping level was increased from 0.05 to 2.0 mol %, the upconversion emission was whole-range tunable from monochromatic green to approximately monochromatic red, which could be mainly attributed to the cross-relaxation between Er(3+) ions. The excellent optical properties and its convenient, low-cost synthesis of the present glass ceramic imply that it is an excellent substitution material for the unobtainable bulk NaYF(4) crystal, potentially applicable in many fields.  相似文献   

15.
Qu X  Song H  Bai X  Pan G  Dong B  Zhao H  Wang F  Qin R 《Inorganic chemistry》2008,47(20):9654-9659
The three-dimensionally ordered macroporous (3DOM) ZrO2: Er(3+), Yb(3+) materials were successfully synthesized by the sol-gel method combined with a polystyrene latex sphere templating technique, and their morphologies, surface physicochemical properties, and upconversion photoluminescence (UC-PL) properties were studied. The results indicate that the materials exhibited both porosity and strong UC-PL under the excitation of a 978 nm diode laser. In comparison with the nonporous samples, the relative intensity of the red ((4)F(9/2)-(4)I(15/2)) to the green ((4)S(3/2)/(2)H(11/2)-(4)I(15/2)) emission decreased visibly because of the decreased nonradiative relaxation in the 3DOM materials. It was also observed that the relative intensity of the green emission to the red emission increased significantly with the increasing excitation power. An indirect three-photon populating process occurred for the green emission as the excitation power and Yb(3+) concentration was high enough.  相似文献   

16.
黄清明  俞瀚  张新奇  俞建长 《化学学报》2013,71(7):1071-1078
利用水热法成功合成了不同形貌的稀土掺杂六方NaY0.95Yb0.03Er0.02F4,包括柱状、粒状、片状、管状等.通过XRD,SEM,TEM对合成样品的物相结构及晶粒形态进行了表征,探讨络合剂EDTA用量;表面活性剂CTAB,P123,十二烷基苯磺酸钠;热溶剂水、乙二醇、聚乙二醇对晶体生长方向的影响,并对不同形态样品进行上转换发光性能测试,分析晶粒形态对上转换发光强度与寿命的影响,结果显示晶粒越小发光强度越强,相当粒径的管状样品的发光强度比粒状的强,不同晶粒形态上转换的主要能量传递模式也不相同.研究结果可以指导我们可控合成适应实际应用需求的晶粒形态及优良上转换发光性能的材料.  相似文献   

17.
18.
利用X射线多晶衍射仪、场发射扫描电镜、场发射透射电镜、X射线光电子能谱和荧光光谱仪对相近半径离子Hf4+和Zr4+共掺六方NaYF4:Yb3+/Tm3+的结构、形貌和上转换发光性能进行研究.结果表明Hf4+和Zr4+离子共掺六方NaYF4:Yb3+/Tm3+可有效调控晶场的不对称性, Hf4+相对于Zr4+是个更好的掺杂离子,它在调控晶场的同时还参与Tm3+离子上转换发光的能量传递过程,明显提高了短波500 nm以下发射带的荧光强度;而Zr4+离子仅扮演晶场调控角色而未能参与稀土离子Tm3+的上转换发光过程, Tm3+离子小于500 nm短波发射带的荧光强度没有得到明显的提高,仅提高802 nm发射带的荧光强度.该研究发现Hf4+可作为蓄能离子参与稀土离子的上转换发光过程,有助于将Hf4+作为蓄能离子和晶格操纵工具用于设计和制备其它高性能的稀土上转换发光材料.  相似文献   

19.
β-NaYF4:Yb,Er upconversion nanophosphor (UCNP) is known as one of the most efficient NIR-to-visible upconversion materials, which shows great potential in bioanalytical chemistry and bioimaging. However, its applications are greatly limited due to its low water dispersibility and thus poor biocompatibility. In this paper, poly(acrylic acid) (PAA)-based ligand exchange strategies are carried out to modify oleic acid-capped hydrophobic β-NaYF4:Yb,Er UCNPs into hydrophilic ones. After efficient surface modific...  相似文献   

20.
Novel upconversion nanocomposites with nanoporous structure were presented in this paper. Silica-coated cubic NaYF4:Yb3+, Tm3+ nanoparticles were first prepared. After annealing, monodisperse cubic/hexagonal mixed phases NaYF4:Yb3+, Tm3+@SiO2 nanoparticles were obtained, and the NaYF4:Yb3+, Tm3+ cores became nanoporous. To the best of our knowledge, the nanoporous structure in NaYF4:Yb3+, Tm3+@SiO2 nanocomposites was observed for the first time. They demonstrate increased upconversion emission compared with unannealed dense NaYF4:Yb3+, Tm3+ nanoparticles due to the appearance of the hexagonal NaYF4:Yb3+, Tm3+. The silica shell not only makes the nanocomposites possess bio-affinity but also protects the NaYF4:Yb3+, Tm3+ cores from aggregating and growing up. Thus the upconversion, nanoporous and bio-affinity properties were combined into one single nanoparticle. The nanocomposites have been characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), small angle X-ray diffraction (SAXRD) and emission spectroscopy. These multifunctional nanocomposites are expected to find applications in biological fields, such as biolabels, drug storage and delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号