首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this article, we describe, for the first time, direct comparisons of the detailed structures of two small molecule organic semiconductors, oligo(phenylenvinylene) (OPV) molecules with chains of five and six phenyl rings (5R-OC(8)H(17) and 6R-OC(8)H(17)), respectively, and their luminescence properties on a single molecule level. Our data originate from a combination of two powerful diagnostic tools in physical chemistry: ion mobility and single molecule fluorescence spectroscopy. These techniques enable us to precisely determine the shapes of isolated molecules in the gas phase and to correlate these structures to the emission from single molecules supported on bare glass substrates. The principal structural uncertainty in OPVs is the (possible) presence and location of cis-vinylene linkages (cis-defects) in the oligomer. The results show that the structures observed in the gas phase are strongly correlated to the categories of molecules observed in the single molecule polarization anisotropy measurements with nearly identical distributions for the two OPV molecules studied. Each category is also characterized by the luminescence efficiency of the molecules in each class, providing a direct correlation between the luminescence efficiency and the shape of the molecule. This combination of techniques provides a level of information far beyond that obtained via any other analytical technique.  相似文献   

2.
We report on the ensemble and single-molecule (SM) dynamics of F?rster resonance energy transfer (FRET) in a multichromophoric rigid polyphenylenic dendrimer (triad) with spectrally different rylene chromophores featuring distinct absorption and emission spectra which cover the whole visible spectral range: a terrylenediimide (TDI) core, four perylenemonoimides (PMIs) attached at the scaffold, and eight naphthalenemonoimides (NMIs) at the rim. For FRET from PMI to TDI taking place with an efficiency of 99.5%, single triad molecules optically excited at 490 nm show fluorescence exclusively from the TDI side in the beginning of their emission. On 360-nm excitation, NMI chromophores transfer their excitation energy either directly or in a stepwise fashion to the core TDI, the latter case involving scaffold-substituted PMIs as intermediate acceptors. Indeed, SM experiments on 360-nm excitation evidence highly efficient FRET from NMI chromophores to the TDI core since individual triad molecules show fluorescence exclusively either from TDI or from an intermediate (oxidized) species but never from PMI. Because PMI and TDI are chromophores with high fluorescence quantum yields and high resistance to photobleaching compared to NMI, 360-nm excitation of a single triad molecule leads to bleaching of NMI chromophores with no chance for PMI to be observed. The spatial positioning and the spectral properties of the chosen rylene chromophores make this multichromophoric system an efficient light collector, able to capture light over the whole visible spectral range and to transfer it finally to the core TDI, the latter releasing it as red fluorescence.  相似文献   

3.
We report on single-molecule studies of photosensitized interfacial electron transfer (ET) processes in Coumarin 343 (C343)-TiO(2) nanoparticles (NP) and Cresyl Violet (CV(+))-TiO(2) NP systems, using time-correlated single-photon counting coupled with scanning confocal fluorescence microscopy. Fluorescence intensity trajectories of individual dye molecules adsorbed on a semiconductor NP surface showed fluorescence fluctuations and blinking, with time constants distributed from milliseconds to seconds. The fluorescence fluctuation dynamics were found to be inhomogeneous from molecule to molecule and from time to time, showing significant static and dynamic disorders in the interfacial ET reaction dynamics. We attribute fluorescence fluctuations to the interfacial ET reaction rate fluctuations, associating redox reactivity intermittency with the fluctuations of molecule-TiO(2) electronic and Franck-Condon coupling. Intermittent interfacial ET dynamics of individual molecules could be characteristic of a surface chemical reaction strongly involved with and regulated by molecule-surface interactions. The intermittent interfacial reaction dynamics that likely occur among single molecules in other interfacial and surface chemical processes can typically be observed by single-molecule studies but not by conventional ensemble-averaged experiments.  相似文献   

4.
Size-correlated single-molecule fluorescence measurements on CdSe quantum dots functionalized with oligo(phenylene vinylene) (OPV) ligands exhibit modified fluorescence intermittency (blinking) statistics that are highly sensitive to the degree of ligand coverage on the quantum dot surface. As evidenced by a distinct surface height signature, fully covered CdSe-OPV nanostructures (approximately 25 ligands) show complete suppression of blinking in the solid state on an integration time scale of 1 s. Some access to dark states is observed on finer time scales (100 ms) with average persistence times significantly shorter than those from ZnS-capped CdSe quantum dots. This effect is interpreted as resulting from charge transport from photoexcited OPV into vacant trap sites on the quantum dot surface. These results suggest exciting new applications of composite quantum dot/organic systems in optoelectronic systems.  相似文献   

5.
The rigidity of a p-phenylene oligomer (p-terphenyl) has been investigated by single molecule confocal fluorescence microscopy. Two different rylene diimide dyes attached to the terminal positions of the oligomer allowed for wavelength selective excitation of the two chromophores. In combination with polarization modulation the spatial orientation of the transition dipoles of both end groups could be determined independently. We have analyzed 597 single molecules in two different polymer hosts, polymethylmethacrylate and Zeonex. On average we find a 22 degrees deviation from the linear gas phase geometry (T = 0 K), indicating a rather high flexibility of the p-phenylene oligomer independent of the matrix. To substantiate our experimental results, we have performed quantum chemical calculations at the density functional theory level for the molecular geometry and the electronic excitations. Our findings are in agreement with former experiments on the persistence length of poly(p-phenylenes).  相似文献   

6.
We report on the directional F?rster resonance energy transfer (FRET) process taking place in single molecules of a first (T1P4) and a second (T2P8) generation of a perylenemonoimide (P)-terrylenediimide (T)-based dendrimer in which the chromophores are separated by rigid polyphenylene arms. At low excitation powers, single-molecule detection and spectroscopy of T1P4 and T2P8 dendrimers point to a highly efficient directional FRET from P donors to the central T acceptor, optical excitation at 488 nm resulting in exclusively acceptor emission in the beginning of the detected fluorescence intensity. Donor emission is seen only upon the bleaching of the acceptor. High-resolution time-resolved single-molecule fluorescence data measured with a microchannel plate photomultiplier reveal, for T2P8, a broad range of FRET rates as a result of a broad range of distances and orientations experienced by the donor-acceptor dendrimers when immobilized in a polymer matrix. Single-molecule data from T2P8 on 488 nm excitation are indicative for the presence, after terrylenediimide bleaching, of a P-P excited dimer characterized by a broad emission spectrum peaking around 600 nm and by fluctuating fluorescence decay times. At high excitation powers, single T1P4 and T2P8 molecules display simultaneous emission from both donor and acceptor chromophores. The effect, called "exciton blockade", occurs due to the presence of multiple excitations in a single molecule.  相似文献   

7.
An oligo(p-phenylenevinylene) (OPV)-substituted hexaarylbenzene has been synthesized and fully characterized. Recycling gel permeation chromatography appeared to be a powerful technique to obtain the OPV molecules in a very pure form. X-ray analysis and polarization optical microscopy revealed that the OPV molecule is plastic crystalline at room temperature with an ordered columnar superstructure. In apolar solvents, the molecules self-assemble via a highly cooperative fashion into right-handed chiral superstructures, which are stable even at high temperatures and low concentration. Atomic force microscopy revealed right-handed fibers with a diameter of 6 nm, indicating pi-stacked aggregates; on a silicon oxide substrate, supercoiled chiral structures were observed. STM studies on a liquid-solid interface showed that the star-shaped OPV molecule forms an organized monolayer having a chiral hexagonal lattice.  相似文献   

8.
A melamine derivative has been covalently equipped with two oligo(para-phenylenevinylene) (OPV) chromophores. This procedure yields a bifunctional molecule with two hydrogen-bonding arrays available for complementary binding to perylene bisimide derivatives. Depending on the solvent, hydrogen-bonded trimers, tetramers, and dimers on a graphite surface are observed for pure OPV-melamine by using scanning tunneling microscopy (STM). Upon the addition of perylene bisimide, linear tapes of perylene bisimide, 12-membered rosettes that consist of alternating hydrogen-bonded OPV-melamine and perylene bisimide moieties are visualized. These results provide direct evidence for the possible modes of hydrogen bonding within a supramolecular co-assembly in solution. Subsequently, the optical properties of pure OPV-melamine and co-assemblies with a perylene bisimide derivative were characterized in solution. In an apolar solvent, OPV-melamine self-assembles into chiral superstructures. Disassembly into molecularly dissolved species is reversibly controlled by concentration and temperature. Complementary hydrogen bonding to a perylene bisimide derivative in an apolar solvent yields multicomponent, pi-stacked dye assemblies of enhanced stability that are characterized by fluorescence quenching of the constituent chromophores. Titration experiments reveal that a mixture of hydrogen-bonded oligomers is present in solution, rather than a single discrete assembly. The solution experiments are consistent with the STM results, which revealed various supramolecular assemblies. Our system is likely not to be optimally programmed to obtain a discrete co-assembled structure in quantitative yield.  相似文献   

9.
For obtaining molecular devices using metal-molecule-metal junctions, it is necessary to fabricate a steady conductive bridge-structure; that is stable chemical bonds need to be established from a single conductive molecule to two facing electrodes. In the present paper, we show that the steadiness of a conductive bridge-structure depends on the molecular structure of the bridge molecule for nanogap junctions using three types of modified oligo(phenylene vinylene)s (OPVs): alpha,omega-bis(thioacetate) oligo(phenylene vinylene) (OPV1), alpha,omega-bis(methylthioacetate) oligo(phenylene vinylene) (OPV2), and OPV2 consisting of ethoxy side chains (OPV3). We examined the change in resistance between the molecule-bridged junction and a bare junction in each of the experimental Au-OPV-Au junctions to confirm whether molecules formed steady bridges. Herein, the outcomes of whether molecules formed steady bridges were defined in terms of three types of result; successful, possible and failure. We define the ratio of the number of successful junctions to the total number of experimental junctions as successful rate. A 60% successful rate for OPV3 was higher than for the other two molecules whose successful rates were estimated to be approximately 10%. We propose that conjugated molecules consisting of methylthioacetate termini and short alkoxy side chains are well suited for fabricating a steady conductive bridge-structure between two facing electrodes.  相似文献   

10.
Low-temperature, single-molecule spectroscopy can provide unparalleled access to the primary emissive species of conjugated polymers. We demonstrate this with the example of one of the most commonly studied polymers, poly(2-methoxy-5-(2'-ethylhexoxy)-1,4-phenylenevinylene), MEH-PPV, which is shown to exhibit sharp fluorescence signatures over one hundred times narrower than the ensemble. These unprecedented narrow emission features can be assigned to single chromophores on the polymer chain, which are selectively addressed by the narrow band excitation. As with organic dye systems, the emission from single chromophores is not static with time, but shows a substantial spectral fluctuation. We find that, for single chromophores, this spectral fluctuation always follows a universal Gaussian statistical distribution. High-resolution spectroscopy provides unique insight into low-energy vibrational modes in the polymer emission, which are generally inaccessible with conventional spectroscopic methods such as site-selective fluorescence or Raman spectroscopy. Interchromophoric coupling can also occur owing to the flexible nature of the polymer backbone. This leads to substantial spectral broadening and a loss of resolution in the vibronic progression. We observe reversible switching within one single molecule between narrow and broad emission, which directly correlates with a discrete switching in emission intensity. We conclude that one and the same single molecule can support aggregated and nonaggregated emission, that is, emission from isolated and aggregated chromophores in one single molecule, rather than the tendency for aggregate emission being intrinsic to the molecule.  相似文献   

11.
A series of 4,4'-π-conjugated-2,2'-bipyridine chromophores (MS 1-8) were synthesized, and their photophysical and thermal properties were investigated. The title "push-pull' chromophores", except MS 1, were integrated with both alkoxy and alkylamino donor functionalities that differ in their donation capabilities. The oligophenylenevinylene (OPV) chromophores MS 4-8 are associated with a π-extended backbone in which the position and the number of alkoxy donors were systematically varied. All of the studied systems possess a D-π-A-A-π-D dyad archetype in which the A-A is the central 2,2'-bipyridine acceptor core that is electronically attached with the donor termini through π-linkers. The fluorescence quantum yields of the synthesized chromophores are found to be sensitive to the molecular archetype and the solvent medium. Out of the eight fluorescent compounds reported in this article, the compound MS 5 exhibits fluorescence in the solid state also. The modulating effect of the nature, position, and number of donor functionalities on the optical properties of these classes of compounds has further been comprehended on the basis of DFT and TD-DFT computation in a solvent reaction field.  相似文献   

12.
The environment and temperature-dependent photoluminescence (PL) intermittency or "blinking" demonstrated by single violamine R (VR) molecules is investigated in two environments: poly(vinyl alcohol) (PVOH) and single crystals of potassium acid phthalate (KAP). In addition, temperatures ranging from 23 °C to 85 °C are studied, spanning the glass-transition temperature of PVOH (T(g) = 72 °C). The PL intermittency exhibited by VR is analyzed using probability histograms of emissive and non-emissive periods. In both PVOH and KAP, these histograms are best fit by a power law, consistent with the kinetics for dark state production and decay being dispersed as observed in previous studies. However, these systems have different temperature dependences, signifying two different blinking mechanisms for VR. In PVOH, the on- and off-event probability histograms do not vary with temperature, consistent with electron transfer via tunneling between VR and the polymer. In KAP the same histograms are temperature dependent, and show that blinking slows down at higher temperatures. This result is inconsistent with an electron-transfer process being responsible for blinking. Instead, a non-adiabatic proton-transfer between VR and KAP is presented as a model consistent with this temperature dependence. In summary, the results presented here demonstrate that for a given luminophore, the photochemical processes responsible for PL intermittency can change with environment.  相似文献   

13.
The spectroscopic properties of Calcium Green 2 (CG-2), a dual-fluorophore Ca(2+) indicator dye, were characterized by a combination of steady state and time-resolved ensemble spectroscopic measurements, molecular mechanics calculations and single-molecule fluorescence spectroscopy. It was found that in Ca(2+) free solutions, CG-2 exists primarily as a highly quenched intramolecular dimer, but when bound to Ca(2+), the molecule adopts an extended, fluorescent conformation. The difference in emission properties of these two CG-2 conformations is explained in terms of simple exciton theory. Through single-molecule fluorescence measurements, we have shown that the bulk increase in ensemble fluorescence intensity correlates with a simple statistical increase in the number of fluorescent molecules in solution. In addition, we have also observed that the majority of CG-2 molecules photobleach in a single step, despite the molecule possessing two distinct fluorophores. A small fraction of molecules photobleach in multiple steps or show a series of transitions between emissive and nonemissive fluorescent states ("blinking"). We rationalize these photophysical phenomena using a simple model based on dipole-dipole F?rster coupling between fluorophores in conjunction with irreversible photodamage to one of the constituent chromophores.  相似文献   

14.
The main aim of this study is to investigate correlations between the impact of an external mechanical force on the molecular framework of fluorophores and the resultant changes in their fluorescence properties. Taking into account previous theoretical studies, we designed a suitable custom‐tailored oligoparaphenylenevinylene derivative (OPV5) with a twisted molecular backbone. Thin foils made of PVC doped with 100 nM OPV were prepared. By applying uniaxial force, the foils were stretched and three major optical effects were observed simultaneously. First, the fluorescence anisotropy increased, which indicates a reorientation of the fluorophores within the matrix. Second, the fluorescence lifetime decreased by approximately 2.5 % (25 ps). Finally, we observed an increase in the emission energy of about 0.2 % (corresponding to a blue‐shift of 1.2 nm). In addition, analogous measurements with Rhodamine 123 as an inert reference dye showed only minor effects, which can be attributed to matrix effects due to refractive index changes. To relate the observed spectroscopic changes to the underlying changes in molecular properties, quantum‐chemical calculations were also performed. Semiempirical methods had to be used because of the size of the OPV5 chromophore. Two conformers of OPV5 (C2 and Ci symmetry) were considered and both gave very similar results. Both the observed blue‐shift of fluorescence and the reduced lifetime of OPV5 under tensile stress are consistent with the results of the semiempirical calculations. Our study proves the feasibility of fluorescence‐based local force probes for polymers under tension. Improved optical sensors of this type should in principle be able to monitor local mechanical stress in transparent samples down to the single‐molecule level, which harbors promising applications in polymer science and nanotechnology.  相似文献   

15.
The supramolecular structure of two types of oligo(p-phenylene vinylene) (OPV) building blocks in dodecane solution is studied. Monofunctional chromophores (MOPV) form well-defined helical assemblies, whereas bifunctional molecules (BOPV) aggregate into so-called frustrated stacks, lacking any higher helical order. This difference in organization has a major influence on the transfer of excitation energy through the assemblies. Energy transfer to supramolecularly incorporated guests (MOPV with lower bandgap) is used to probe the intrinsic differences in exciton mobility in these two types of mixed aggregates. From the observed donor fluorescence quenching, it can be concluded that the helically ordered nature of the MOPV stacks facilitates the transfer of excitation energy, yielding evidence for higher exciton mobility in the well-ordered assemblies than in the frustrated stacks. Finally, the concept of energy transfer in supramolecular assemblies is extended to the solid state by the successful implementation in a light-emitting diode (LED).  相似文献   

16.
Fluorescence and absorption spectra of hydrophobic sunscreens, weakly fluorescent octyl methoxycinnamate, moderately fluorescent octyl salicylate and highly fluorescent 2-ethylhexyl-4-(dimethylamino)benzoate (padimate O) adsorbed to dielectric microspheres in aqueous suspension, have been compared with spectra in organic solution. The fluorescence of adsorbed salicylate and padimate is enhanced compared with fluorescence in methanol: about a factor of 6 and 30 in terms of fluorescence yield per molecule of salicylate and padimate, respectively. Cinnamate, which has a low fluorescence yield, does not show a comparable fluorescence enhancement. The fluorescence amplification is independent of sphere diameter from 30 to 1500 nm, at least for salicylate. The enhancement, as well as the location of absorption spectral peaks, is consistent with a low-dielectric constant environment of the molecules, in spite of the presumed location near the interface between polystyrene (epsilon = 2.4-3.8) and water (epsilon = 78). The adsorbed state of these sunscreens represents a proposed improved in vitro model for the environment of sunscreens in vivo, as well as a general model for chromophores in heterogeneous environments.  相似文献   

17.
In order to understand exciton migration and fluorescence intensity fluctuation mechanisms in conjugated polymer single molecules, we studied fluorescence decay dynamics at "on" and "off" fluorescence intensity levels with 20 ps time resolution using MEH-PPV [poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] dispersed in PMMA. Two types of intensity fluctuations were distinguished for single chains of conjugated polymers. Abrupt intensity fluctuations (blinking) were found to be always accompanied by corresponding changes in fluorescence lifetime. On the contrary, during "smooth" intensity fluctuations no lifetime change was observed. Time-resolved data in combination with data on fluorescence emission and excitation anisotropy lead to a picture where a single polymer molecule is seen as consisting of several energy transfer domains. Exciton migration is efficient within a domain and not efficient between domains. Each domain can have several emitting low-energy sites over which the exciton continuously migrates until it decays. Emission of individual domains is often highly polarized. Fluorescence from a domain can be strongly quenched by Forster energy transfer to a quencher (hole polaron) if the domain overlaps with the quenching sphere.  相似文献   

18.
Self-assembled nanotapes of a few tailor-made oligo(p-phenylenevinylene)s (OPVs) have been prepared and used as supramolecular donor scaffold to study the fluorescence resonance energy transfer (FRET) to a suitable acceptor. In nonpolar solvents, FRET occurs with nearly 63-81% efficiency, exclusively from the self-assembled OPVs to entrapped Rhodamine B, resulting in the quenching of the donor emission with concomitant formation of the acceptor emission at 625 nm. The efficiency of FRET is considerably influenced by the ability of the OPVs to form the self-assembled aggregates and hence could be controlled by structural variation of the molecules, and polarity of the solvent. Most importantly, FRET could be controlled by temperature as a result of the thermally reversible self-assembly process. The FRET efficiency was significantly enhanced (ca. 90%) in a xerogel film of the OPV1 which is dispersed with relatively less amount of the acceptor (33 mol %), when compared to that of the aggregates in dodecane gel. FRET is not efficient in polar solvents due to weak self-organization of the chromophores. These results indicate that energy transfer occurs exclusively from the self-assembled donor and not directly from the individual donor molecules. The present study illustrates that the self-assembly of chromophores facilitates temperature and solvent controlled FRET within pi-conjugated nanostructures.  相似文献   

19.
20.
CdTe quantum dots (QDs) were synthesized in aqueous solution using thioglycolic acid (HS-CH2COOH, TGA) as a stabilizer. The phenomenon of "on" and "off" luminescence intermittency (blinking) of CdTe QDs in PVA and trehalose was investigated by single-molecule optical microscopy, and we identified that the intermittencies of single QDs were correlated with the interaction of water molecules absorbed on the QD surface. The "off" times, the interval between adjacent "on" states, remained essentially unaffected with an increase in excitation intensity. Every QD showed a similar power law behavior for the "off" time distribution regardless of the excitation intensity and aqueous environment of the QDs. In the case of "on" time distribution, power law behavior with an exponential cutoff tail is observed at longer time scales. The time traces indicated that the "on" time was inversely proportional to the excitation intensity; the duration of "on" time became shorter with increasing excitation intensity. An increase in the duration of "on" time was observed in trehalose with respect to that in PVA. We obtained a clear decrease in the power law exponent when PVA was replaced with trehalose. These observations indicate that the luminescence blinking statistics of water-soluble single CdTe QDs is significantly dependent on the aqueous environment, which is interpreted in terms of passivation of the surface trap states of QDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号