首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorescence spectroscopy was used to characterize inclusion compounds between 4-amino-1,8-naphthalimides (ANI) derivatives and different cyclodextrins (CDs). The ANI derivatives employed were N-(12-aminododecyl)-4-amino-1,8-naphthalimide (mono-C12ANI) and N,N′-(1,12-dodecanediyl)bis-4-amino-1,8-naphthalimide (bis-C12ANI). The CDs used here were α-CD, β-CD, γ-CD, HP-α-CD, HP-β-CD and HP-γ-CD. The presence of CDs resulted in pronounced blue-shifts in the emission spectra of the ANI derivatives, with increases in emission intensity. This behavior was parallel to that observed for the dyes in apolar solvents, indicating that inclusion complexes were formed between the ANI and the CDs. Mono-C12ANI formed inclusion complexes of 1:1 stoichiometry with all the CDs studied. Complexes with the larger CDs (HP-β-CD, HP-γ-CD and γ-CD) were formed by inclusion of the chromophoric ANI ring system, whereas the smaller CDs (α-CD, HP-α-CD and β-CD) formed complexes with mono-C12ANI by inclusion of the dodecyl chain. Bis-C12ANI formed inclusion complexes of 1:2 stoichiometry with HP-β-CD, HP-γ-CD and γ-CD, but did not form inclusion complexes with α-CD, HP-α-CD and β-CD. The data were treated in the case of the large CDs using a Benesi-Hildebrand like equation, giving the following equilibrium constants: mono-C12ANI:HP-β-CD (K 11 = 50 M?1), mono-C12ANI:HP-γ-CD (K 11 = 180 M?1), bis-C12ANI:HP-β-CD (K 12 = 146 M?2), bis-C12ANI:HP-γ-CD (K 12 = 280 M?2).  相似文献   

2.
The inclusion complexes of four flavonols with modified cyclodextrins (CDs) have been investigated. The effect of heptakis (2,6-di-O-methyl) β-cyclodextrin (DM-β-CD) and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) on the aqueous solubility of flavonols, namely, galangin, kaempferol, quercetin, and myricetin was investigated, respectively. The increased solubility of all flavonols in the presence of CD was evidenced. The NMR experiment and molecular modeling studies showed that flavonols interact with each modified CD through different binding modes. Flavonols can complex with CDs largely by two binding modes. The first one is that B-ring of flavonols is oriented toward secondary rim of CD. The second one is that A-ring of flavonols is oriented toward secondary rim of CD. Whereas only the first mode was observed in DM-β-CD complexes, both the first and the second mode were observed in HP-β-CD complexes in this study.  相似文献   

3.
Rufinamide (RUF) was characterized in terms of cyclodextrin (CD) complexation in order to improve its aqueous solubility. Binary systems of RUF with three CDs—β-cyclodextrin (β-CD), randomly methylated-β-cyclodextrin (RAMEB) and sulfobutylether-β-cyclodextrin (SBE-β-CD)—were characterized with a wide variety of analytical techniques. Liquid state characterization was carried out by complementary techniques such as nuclear magnetic resonance spectroscopy (NMR), capillary electrophoresis (CE), mass spectrometry (MS) and phase solubility studies. The latter revealed that the stability of the complexes decreased in the order of RAMEB?>?β-CD?>?SBE-β-CD. AL-type diagrams were obtained in all cases, characteristic of 1:1 stoichiometry, with a maximum of over 15-fold increase in RUF solubility, when complexed with RAMEB. NMR Job plot and MS studies confirmed phase solubility results, regarding the binding stoichiometry. 1H NMR and 2D ROESY investigations revealed the inclusion of the triazole moiety of RUF, confirmed by molecular modeling. Solid state complexation in 1:1 molar ratio was carried out by kneading method and investigated by differential scanning calorimetry (DSC) and infrared spectroscopy (IR). Comparative dissolution studies indicated an over two-fold improvement in dissolution efficacy of the kneaded products, when compared to the pure drug. Results of the present study might pave the way for a drug formulation with improved bioavailability.  相似文献   

4.
The inclusion complexes of uniconazole [(E)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-lyl)-1-penten-3-ol, UCZ] with two cyclodextrin derivatives, hydroxypropyl-β-cyclodextrin (HP-β-CD) and methylated-β-cyclodextrin (Me-β-CD), were prepared and characterized by 1H NMR and FT-IR. The phase solubility of UCZ and HP-β-CD, UCZ and Me-β-CD, which displays the ability of CDs complexation and solubilization, was studied in aqueous solutions and phosphate buffer solutions (PBS) with different property pH values (6.2, 7.2, 8.0). The solubility results indicated that the pH of PBS showed more enhancement on the interaction of HP-β-CD and UCZ than Me-β-CD with the increasing pH value, and the optimal pH value for complexation of UCZ and HP-β-CD, UCZ and Me-β-CD was at 8.0 and at 7.2, respectively. These were also determined by UCZ release behavior and dissolution studies of the complexes in solid state.  相似文献   

5.
The inclusion complexation behaviour of ferulic acid (FA) with β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) was investigated by UV–vis, fluorescence and 1H NMR spectroscopy. Since the guest may exist in either anionic or neutral form, the experiments were performed at different pH values. The stoichiometry and association constants of the complexes were determined by nonlinear regression analysis. The phase-solubility studies indicated that the water solubility of FA was improved through complexation with β-CD and HP-β-CD. An increase in the antioxidant reactivity was observed when inclusion complexes that FA formed with CDs were studied. Based on the NMR data, the spatial configurations of FA/β-CD and FA/HP-β-CD complexes were proposed, which suggested that FA entered into the cavity of β-CD from the narrow side, with the lipophilic aromatic ring and ethylenic moieties inside the CD cavity, and the –COOH group was close to the wider rim and exposed outside the cavity. A theoretical study of the complexes using molecular modelling gives the results in good agreement with the NMR data.  相似文献   

6.
ABSTRACT

A mixture of glucosyl-cyclomaltoheptaoses (β-cyclodextrins, βCDs) was prepared by glucoamylolysis of a mixture of maltosyl-βCDs which was produced on an industrial scale from maltose and β CD through the reverse action of Klebsiella pneumoniae pullulanase. Glucosyl-βCDs in the mixture were separated by HPLC on a reversed phase column and their molecular weights were measured by FAB-MS. In addition, the number of side-chains in each molecule was confirmed by methylation analysis and it was proved that the mixture comprised mainly of a monoglucosyl-βCD [G-β CD] and diglucosyl-β-CDs [(G)2-βCDs], and as a minor component triglucosyl-β CDs [(G)3-βCDs], and that G-, (G)2-, and (G)3-β CDs were produced in the ratios of 50%:45%:5%. The structures of three positional isomers of (G)2-β CD were established by HPLC analysis of partial hydrolyzates, 13C NMR spectroscopy, and chemical synthesis. Four regioisomeric (G)3-β CDs which could be isolated were characterized by 13C NMR spectroscopy.  相似文献   

7.
Oleuropein (OLE) is a major phenolic compound of olive leaf (Olea europaea) and has many therapeutic properties associated with olive leaf extracts. This work concerns the determination of the inclusion complex constant between OLE and cyclodextrins (CDs), based on the competition of two guests for the CD cavity, one being a dye and the other OLE. The dye used was methylorange (MO) and pH 3 was selected, since MO molar absorptivity at 500 nm is at maximum in this condition. A solution of MO, OLE, and α-CD or β-CD, with citrate buffer was used for determining the absorbance values. From these data and by appropriate mathematical modeling, the equilibrium constant for the formation of OLE:CD complexes were obtained: for OLE:α-CD K = 1,352.4 L mol?1 (R 2 = 0.9975) and for OLE:β-CD K = 1,827.9 L mol?1 (R 2 = 0.9991). The results show that OLE has a greater affinity for β-CD than for α-CD and given the relatively high constants, OLE:CD complexes have potential for giving longer shelf lives for OLE medicinal and food additive preparations.  相似文献   

8.
In present work the complexation of Res with two kinds of cyclodextrins (CDs), native β-cyclodextrin (β-CD) and modified hydroxypropyl-β-cyclodextrin (HP-CD), have been investigated by fluorescence spectroscopy, 1H-NMR spectroscopy and molecular modeling methods. The stoichiometric ratios, inclusion constants and thermodynamic parameters have been determined by the fluorescence data. In all cases 1:1 inclusion complexes are formed. The inclusion ability of HP-CD is larger than that of β-CD. Both inclusion processes have negative ?G, negative ?H and positive ?S. Thermodynamic analysis suggests that Van der Waals force of guest-host interactions and the release of high-enthalpy water molecules from the cavity of CDs play important roles in driving complex formation. The study of molecular modeling shows that part of the A-ring and the B-ring of Res are placed in the cavity of β-CD, and the hydroxyl groups are projected outside. As for Res in HP-CD, the B-ring of Res is included in the cavity of HP-CD, and part of the A-ring is pointed outside. 1H-NMR spectroscopy results show that H2, H3, H4 and H5 protons of Res are more affected by the complexatin, indicating that they are located inside the torus of CDs, which are in agreement with the result of the molecular modeling.  相似文献   

9.
The main purpose of this work was to study the chiral recognition thermodynamics of inclusion complexes formed by flavanones and β-cyclodextrins, and its relation with the inclusion geometries, through NMR experiments. By using the racemic mixtures of (±)-flavanone (FL) and (±)-2′-hydroxyflavanone (2′OHFL), diasteroisomeric complexes were formed employing β-cyclodextrin (βCD), (2-hydroxypropil)-β-cyclodextrin (HPβCD) and heptakis-(2,6-O-dimethyl)-β-cyclodextrin (DMβCD). 1H NMR experiments of the complexes showed enantiodifferentiation for FL/βCD, FL/HPβCD, FL/DMβCD, 2′OHFL/HPβCD and 2′OHFL/DMβCD complexes, so they were able to be studied by obtaining the stoichiometry (1:1 for each complex), association constants (Ka), Ka ratios, and thermodynamics (ΔH, ΔS and ΔG). The results show that Ka values decrease with increasing temperature and that Ka ratio values removed from 1 not always reflect better enantiodiscrimination by NMR. Thermodynamics (ΔH and ΔG) show an exothermic and spontaneous formation of the complexes. Since the results were established for each couple of diasteroisomeric complexes separately, comparison of thermodynamics between them was possible, concluding that one half of the couples of diasteroisomeric complexes present chiral recognition due to enthalpic phenomena and the other half due to entropic phenomena. Additionally, ROESY experiments were performed to estimate the inclusion geometry of the complexes, which are in good agreement with the thermodynamic and Ka results.  相似文献   

10.
《Tetrahedron: Asymmetry》2006,17(6):975-983
The inclusion complexes formed between two chiral N-imidazole derivatives and four cyclodextrins (α-, β-, γ-, and highly sulfated-β-CDs) were investigated by one- and two-dimensional 1H NMR. With the additional results of an ESI-MS study, a 1:1 stoichiometry was proven for all the complexes studied. The complexes were also characterized in terms of binding constants and the results were compared to those obtained by CD-EKC. An identical affinity order for the various CDs was obtained with both techniques. Furthermore, the affinity order for both enantiomers determined by their binding constants values is confirmed by the enantiomer migration orders previously determined by CD-EKC. The structural data obtained by the 2D-ROESY experiments allowed us to understand the interaction mechanisms and to propose, for different analyte structures, theoretical models of inclusion orientation in the CD cavity. These models are in accordance with our previous hypothesis based on the analyte structure–enantioseparation relationships and the thermodynamic parameters determined by CD-EKC.  相似文献   

11.
Three selective CB2 cannabinoid receptor ligands have recently been discovered to be promising anti-inflammatory agents but their low water solubility hinder their per os administration. The popularity of the cyclodextrins, from a pharmaceutical standpoint lies on their ability to interact with poorly water-soluble drugs and improve their solubility. Herein, three experimental approaches for calculating the stability constant of complexes between the selective CB2 ligands and either the β-CD or the HP-β-CD, were tested: nuclear magnetic resonance, micellar electrokinetic chromatography and high performance liquid chromatography in reversed phase. In NMR studies the calculated K values were relatively high and were between 1486 and 3571 M?1 with β-CD. With HP-β-CD they were between 1203 and 2650 M?1. Concerning the two others techniques the K values were found lower. In MECK studies with β-CD they were between 308 and 792 M?1 and with HP-β-CD between 124 and 764 M?1. Finally in RP-HPLC studies with β-CD, they were between 539 and 1144 M?1 and with HP-β-CD between 196 and 396 M?1. These calculated constants suggest that a complexation phenomenon occurs. A model for inclusion of one of the CB2 ligands in the β-CD was then proposed from molecular modeling studies.  相似文献   

12.
The complexation of three isoquinoline alkaloids berberine, palmatine and coralyne with α-, β-, and γ-CDs were studied by absorption, fluorescence, circular dichroism, NMR spectroscopy and microcalorimetric assay techniques. Their binding constant (K BH) values were determined by Benesi–Hildebrand equation. All the alkaloids formed 1:1 stoichiometry complexes with the cyclodextrins (CDs). The binding affinity is largest in β-CD followed by γ-, and α-CD for coralyne, followed by berberine and then palmatine. The thermodynamic parameters of the complexation were determined by calorimetry. The stoichiometry of complex formation and the variation of the apparent binding constant from spectroscopic studies were confirmed by calorimetry. The formation of the inclusion complexes was entropy driven in almost all the systems. Coralyne formed the strongest complex with all the CDs, followed by berberine and palmatine in that order. Coralyne-β-CD complex was studied through NMR, indicating more than one interaction mode.  相似文献   

13.
A detailed NMR (1H, COSY, and ROESY) spectroscopic study of complexation of Flunarazine (FL) with α- and β-CD was carried out. 1H NMR titration studies confirmed the formation of FL/α-CD and FL/β-CD complexes as evidenced by chemical shift variations of the proton resonances of both the CDs and FL. The stoichiometry of the complexes was determined to be 1:2 (FL/α-CD) and 1:1 (FL/β-CD) and overall binding constants were also calculated. It was confirmed with the help of ROESY spectral data that only one of the F-substituted aromatic ring and phenyl ring penetrate the α-CD cavity while both F-substituted aromatic rings as well as phenyl ring penetrates the β-CD cavity during complexation. The binding modes of FL/CD cavity interactions derived from ROESY experimental data show that the resulting complex of FL with β-CD possesses better induced fit interaction as compared to α-CD, which is responsible for the enhanced molecular stability with β-CD in comparison to α-CD. The mode of penetration of guest into the CD cavity and structures of the complexes has been established.  相似文献   

14.
The purpose of the present work was to investigate the interaction of drugs and octanol with hydroxypropyl β- (HPβCD) and γ- (HPγCD) cyclodextrin, sulfobutyl ether β-cyclodextrin (SBEβCD) and randomly methylated-β-cycoldextrin (RMβCD) and to describe the interaction by theoretical models. The poorly soluble steroid drugs progesterone, estrone and prednicarbate were used as model compounds in this study. Hexane and chloroform were also investigated in combination with HPβCD. Octanol formed a complex with all cyclodextrins and the saturation of the aqueous solution with this solvent therefore had a significant effect on the solubilization and extraction potential of cyclodextrins. Hexane had less affinity for cyclodextrins, but the drugs were poorly soluble in this solvent and it could therefore not be used in phase-distribution investigations. Previously we have derived equations that can be used to account for the competitive interaction between two guest compounds that compete for space in the cyclodextrin cavity. These equations were rearranged to calculate the complexation efficacy from phase-solubility data. An equation was derived that obtains intrinsic solubility (S 0) and intrinsic partition coefficient (P) from the slopes of the phase-solubility and phase-distribution profiles. Investigation of the data showed that the results could not be sufficiently explained by the “classical” drug/cyclodextrin complex model that recognizes the possibility of competitive interactions but ignores any contribution from higher order complexes or aggregation of the cyclodextrin complexes. Relative difference in solubilization potential of different cyclodextrins cannot be translated to relative differences in extraction efficacy. Thus, for these three steroid compounds, RMβCD and SBEβCD gave the best solubilization potential whereas the best extraction efficacy was observed with HPγCD.  相似文献   

15.
Endothelial cells (HUVEC) were treated with β-cyclodextrin (β-CD) and hydroxypropylated or methylated derivatives solutions to confirm their lack of affinity with phospholipids and their specificity towards cholesterol. Further studies were performed on bovine aortic endothelial cells to assess the effect of β-CDs (mainly methylated derivatives) on membrane microdomains (lipid rafts or caveolae), by detecting the caveolae marker caveolin-1 in fractions of sucrose gradients. A displacement from the lighter to the heavier fractions, characteristic of caveolae disruption, was observed using CDs. The strongest effect was obtained with dimethyl-β-CD, for which an accumulation of caveolin-1 was observed in the bottom of the gradient. Crysmeb® and trimethyl-β-CD seemed to have the weaker effects as a significative amount of caveolin-1 was still detected in the light fraction corresponding to caveolae. β-CD and CDs having a degree of methylation a bit lower than 2 showed intermediate effects. The results of the present study on microdomains seem in good correlation with the cell cholesterol extraction capacities of CDs previously determined.  相似文献   

16.
At around 5×10-6?mol?dm-3 of hematoporphyrin (HP), an HP dimer exists as well as an HP monomer. The equilibrium constant for the dimerization of HP in pH 10.0 buffer has been evaluated to be 1.70×105?mol-1?dm3 from the HP concentration dependence of the absorption spectrum. In aqueous solution, HP forms 1:1 inclusion complexes with β-cyclodextrin (β-CD), γ-cyclodextrin (γ-CD), and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin (TM-β-CD). The fluorescence of HP is significantly enhanced by the addition of CDs. From simulations of the fluorescence intensity changes, the equilibrium constants for the formation of the CD–HP inclusion complexes have been estimated to be 200, 95.7, and 938?mol-1?dm3 for β-CD, γ-CD, and TM-β-CD, respectively. HP forms a 1:1 complex with 1,1′-diheptyl-4,4′-bipyridinium dibromide (DHB) in aqueous solution. In contrast to the addition of CDs, the HP fluorescence is significantly quenched by the addition of DHB. The equilibrium constant for the formation of the HP–DHB complex has been evaluated to be 1.98×105?mol-1?dm3 from the fluorescence intensity change of HP. The addition of DHB to an HP solution containing β-CD induces a circular dichroism signal of negative sign, indicating the formation of a ternary inclusion complex involving β-CD, HP, and DHB. In contrast, there is no evidence for the formation of a ternary inclusion complex of HP with DHB and TM-β-CD.  相似文献   

17.
Complexations between three oridonin derivatives and β‐cyclodextrin (βCD) were studied by nuclear magnetic resonance (NMR) method. Job's plots for complexes were depicted by 1H NMR spectra chemical shifts, which proved the 1:1 stoichiometry inclusion complex formation between each derivative and βCD. Two‐dimensional rotating frame overhauser effect spectroscopy (2D ROESY) support the above conclusion and also proved that ring A of each oridonin derivative deeply enters into hydrophobic cavity from the wider rim and the other parts are outside the cavity. Apparent formation constants (Ka) of complexes between three oridonin derivatives and two CDs are calculated according to Scott's equation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The inclusion complexes of isoquercitrin (IQ) with cyclodextrins (CDs) including β-cyclodextrin (β-CD), hydroxypropyl-β-cyclodextrin (HP-β-CD) and dimethyl-β-cyclodextrin (DM-β-CD) have been investigated using the methods of steady-state fluorescence, UV-vis absorption and induced circular dichroism. The stoichiometric ratio of the three complexes was found to be 1:1 and the stability constants (K) were estimated from spectrofluorometric titrations, as well as the thermodynamic parameters. Maximum inclusion ability was measured in the case of DM-β-CD due to the increased hydrophobicity of the host cavity, followed by HP-β-CD and β-CD. The effect of pH on the complexation process was also quantitatively assessed. IQ exists in different molecular forms depending on pH and β-CDs were most suitable for inclusion of the neutral form of IQ. The phase-solubility diagrams obtained with β-CD, HP-β-CD and DM-β-CD were all classical AL type. And DM-β-CD provided the best solubility enhancement, 12.3-fold increase compared to 2.8- and 7.5-fold increase for β-CD and HP-β-CD. The apparent stability constants obtained from the solubility data at 25 °C were comparable with those obtained from the fluorescence assays. Moreover, 1H NMR was carried out, which revealed that the IQ favorably inserted into the inner cavity from the chromone part instead of the phenyl part, which was in agreement with molecular modeling studies.  相似文献   

19.
Dapsone (DAP) is a synthetic sulfone drug with bacteriostatic activity, mainly against Mycobacterium leprae. In this study we have investigated the interactions of DAP with cyclodextrins, 2-hydroxypropyl-β-cyclodextrin (HPβCD) and β-cyclodextrin (βCD), in the presence and absence of water-soluble polymers, in order to improve its solubility and bioavailability. Solid systems DAP/HPβCD and DAP/βCD, in the presence or absence of polyvinylpyrrolidone (PVP K30) or hydroxypropyl methylcellulose (HPMC), were prepared. The binary and ternary systems were evaluated and characterized by SEM, DSC, XRD and NMR analysis as well as phase solubility assays, in order to investigate the interactions between DAP and the excipients in aqueous solution. This study revealed that inclusion complexes of DAP and cyclodextrins (HPβCD and βCD) can be produced in order to improve DAP solubility and bioavailability in the presence or absence of polymers (PVP K30 and HPMC). The more stable inclusion complex was obtained with HPβCD, and consequently HPβCD was more efficient in improving DAP solubility than βCD, and the addition of polymers had no influence on DAP solubility or on the stability of the DAP/CDs complexes.  相似文献   

20.
The complexation of camptothecin and homocamptothecin derivatives, topoisomerase I inhibitors, with two cyclodextrins (CDs) of pharmaceutical interest (native and hydroxypropylated β-CD) was studied at pH 3.5 and 6. In a first step, the affinity order of the six compounds studied for the β-CD and HP-β-CD was evaluated in HPLC using immobilized stationary phases [Cyclobond I 2000 (β-CD) and Cyclobond I 2000 RSP (HP-β-CD)]. In a second step, the apparent binding constants of the 12 complexes studied were determined at both pH by HPLC using Scott’s method with CD as a chiral additive. The 1:1 stoichiometry of the complex formed between HP-β-CD and the homocamptothecin derivative elomotecan (R)-6 was established by fluorescence spectroscopy using the continuous variation method developed by Job and ESI-MS. Complementary investigations were achieved for topotecan (S)-3 and elomotecan (R)-6 using CE. Further studies provided similar conclusions concerning affinity of all the derivatives studied for both CDs: that is, a slightly larger affinity was observed for HP-β-CD with respect to β-CD, except for (S)-3. For (S)-3, this affinity increase with pH, in the range studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号