首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of cationic lanthanide porphyrinate complexes of the general formula [(Por)Ln(H(2)O)(3)](+) (Ln(3+)=Yb(3+) and Er(3+)) were synthesized in moderate yields through the interaction of meso-pyridyl-substituted porphyrin free bases (H(2)Por) with [Ln{N(SiMe(3))(2)}(3)]·x[LiCl(thf)(3)], and the corresponding neutral derivatives [(Por)Ln(L(OMe))] (L(OMe)(-)=[(η(5)-C(5)H(5))Co{P(=O)(OMe)(2)}(3)](-)) were also prepared from [(Por)Ln(H(2)O)(3)](+) by the addition of the tripodal anion, L(OMe)(-), an effective encapsulating agent for lanthanide ions. Furthermore, the water-soluble lanthanide(III) porphyrinate complexes--including [(cis-DMPyDPP)Yb(H(2)O)(3)]Cl(3) (cis-DMPyDPP=5,10-bis(N-methylpyridinium-4'-y1)-15,20-di(phenyl)porphyrin), [(trans-DMPyDPP)Yb(H(2)O)(3)]Cl(3) (trans-DMPyDPP=5,15-bis(N-methylpyridinium-4'-y1)-10,20-di(phenyl)porphyrin), [(TMPyP)Yb(L(OMe))]I(4), and [(TMPyP)Er(L(OMe))]I(4) (TMPyP=tetrakis(N-methylpyridinium-4-y1)porphyrin)--were obtained by methylation of the corresponding complexes with methyl iodide and unambiguously characterized. The binding interactions and photocleavage activities of the water-soluble lanthanide(III) porphyrinate complexes towards DNA were investigated by UV-visible, fluorescence, and near-infrared luminescence spectroscopy, as well as circular dichroism and gel electrophoresis.  相似文献   

2.
三角架型配体由于其独特的配位方式而具有许多优良的物理和化学性质 ,如能稳定高氧化态的过渡金属离子[1 3] ,用作优良的电极活性物质[4] ,具有生物活性[5] 等 .因此近十余年来对该类配合物的研究一直是配位化学研究领域的一个重要部分 .但到目前为止 ,对具有三角架结构的三酰胺型开链冠醚的研究却很少 ,且主要集中于研究它与过渡金属和碱金属离子的相互作用及其性质[4,5] ,有关该类配体与稀土离子的配位形式及性质的研究则更少[6] .为了进一步研究该类配体与稀土离子的配位能力及所形成配合物的性质 ,我们参照文献 [5]方法 ,合成出配体 1 ,…  相似文献   

3.
The compounds Ce(10)Cl(4)Ga(5) and Ln(3)ClGa(4) (Ln = La, Ce) were synthesized from stoichiometric mixtures of Ln, LnCl(3), and Ga under Ar atmosphere in sealed Ta ampules at 910-1020 degrees C for 25-26 days. Ce(10)Cl(4)Ga(5) is isostructural to La(10)Cl(4)Ga(5) (space group I4/mcm, No. 140) with lattice constants a = 7.9546(11) A, c = 31.793(6) A. Ln(3)ClGa(4) represents a new structural type, also in the space group I4/mcm, with a = 8.1955(8) and 8.1123(11) A, c = 11.363(2) and 11.229(2) A, respectively, for Ln = La and Ce. Ce(10)Cl(4)Ga(5) features building blocks of Ga-centered Ce(6) trigonal prisms and distinctive two-dimensional intermetallic CuAl(2) and U(3)Si(2) type nets. Its electronic structure falls within the realm of reduced rare-earth halides. Ln(3)ClGa(4) also contains the intermetallic CuAl(2) type nets, but the interstitials are inverted: The building blocks are Cl-centered Ln(6) octahedra. Its electronic structure is characterized by strong peripheral Ln-Ga bonding stabilizing the Ln(6)Cl octahedron which normally would have its Ln-Ln antibonding orbitals filled with electrons from interstitials beyond chalcogen. Magnetic susceptibility and conductivity measurements confirm the metallic nature of all three compounds.  相似文献   

4.
La(III) and Ce(III) complexes containing ligand of N-phenyl-2-pyridinecarboxamide (HL) were synthesized and characterized by elemental analyses, conductivity measurement, IR spectra and thermal analysis. The general formulas of the complexes were [Ln(HL)(3)(H(2)O)(2)](NO(3))(3).2H(2)O [Ln=La(III), Ce(III)]. The results indicated that the oxygen of carbonyl and the nitrogen of pyridyl coordinated to Ln(III), and there were also two water molecules taking part in coordination. Ln(III) and HL formed 1:3 chelate complexes and the coordination number was eight. The interaction between the complexes and DNA was studied by means of UV-vis spectra, fluorescence spectra, SERS spectra and agarose gel electrophoresis. The results showed that complexes can bind to DNA. The binding ability decreased in following order: La(III) complex, Ce(III) complex, and HL. The interaction modes between DNA and the three compounds were found to be mainly intercalative.  相似文献   

5.
Eighteen trinuclear NiII2LnIII complexes of 2,6-di(acetoacetyl)pyridine (H2L) (Ln=La-Lu except for Pm) were prepared by a "one-pot reaction" of H2L, Ni(NO3)2.6H2O, and Ln(NO3)3.nH2O in methanol. X-ray crystallographic studies indicate that two L2- ligands sandwich two NiII ions with the terminal 1,3-diketonate sites and one LnIII ion with the central 2,6-diacylpyridine site, forming the trinuclear [Ni2Ln(L)2] core of a linear NiLnNi structure. The terminal Ni assumes a six-coordinate geometry together with methanol or water molecules, and the central Ln assumes a 10-coordinate geometry together with two or three nitrate ions. The [Ni2Ln(L)2] core is essentially coplanar for large Ln ions (La, Ce, Pr, Nd) but shows a distortion with respect to the two L2- ligands for smaller Ln ions. Magnetic studies for the Ni2Ln complexes of diamagnetic LaIII and LuIII indicate an antiferromagnetic interaction between the terminal NiII ions. A magnetic analysis of the Ni2Gd complex based on the isotropic Heisenberg model indicates a ferromagnetic interaction between the adjacent NiII and GdIII ions and an antiferromagnetic interaction between the terminal NiII ions. The magnetic properties of other Ni2Ln complexes were studied on the basis of a numerical approach with the Ni2La complex and analogous Zn2Ln complexes, and they indicated that the NiII-LnIII interaction is weakly antiferromagnetic for Ln=Ce, Pr, and Nd and ferromagnetic for Ln=Gd, Tb, Dy, Ho, and Er.  相似文献   

6.
The reaction of the lanthanide salts LnI3(thf)4 and Ln(OTf)3 with tris(2-pyridylmethyl)amine (tpa) was studied in rigorously anhydrous conditions and in the presence of water. Under rigorously anhydrous conditions the successive formation of mono- and bis(tpa) complexes was observed on addition of 1 and 2 equiv of ligand, respectively. Addition of a third ligand equivalent did not yield additional complexes. The mono(tpa) complex [Ce(tpa)I3] (1) and the bis(tpa) complexes [Ln(tpa)2]X3 (X = I, Ln = La(III) (2), Ln = Ce(III) (3), Ln = Nd(III) (4), Ln = Lu(III) (5); X = OTf, Ln = Eu(III) (6)) were isolated under rigorously anhydrous conditions and their solid-state and solution structures determined. In the presence of water, 1H NMR spectroscopy and ES-MS show that the successive addition of 1-3 equiv of tpa to triflate or iodide salts of the lanthanides results in the formation of mono(tpa) aqua complexes followed by formation of protonated tpa and hydroxo complexes. The solid-state structures of the complexes [Eu(tpa)(H2O)2(OTf)3] (7), [Eu(tpa)(mu-OH)(OTf)2]2 (8), and [Ce(tpa)(mu-OH)(MeCN)(H2O)]2I4 (9) have been determined. The reaction of the bis(tpa) lanthanide complexes with stoichiometric amounts of water yields a facile synthetic route to a family of discrete dimeric hydroxide-bridged lanthanide complexes prepared in a controlled manner. The suggested mechanism for this reaction involves the displacement of one tpa ligand by two water molecules to form the mono(tpa) complex, which subsequently reacts with the noncoordinated tpa to form the dimeric hydroxo species.  相似文献   

7.
A series of low-melting-point salts with hexakisdicyanonitrosomethanidolanthanoidate anions has been synthesised and characterised: (C(2) mim)(3) [Ln(dcnm)(6)] (1?Ln; 1?Ln=1?La, 1?Ce, 1?Pr, 1?Nd), (C(2) C(1) mim)(3) [Pr(dcnm)(6)] (2?Pr), (C(4) C(1) pyr)(3) [Ce(dcnm)(6)] (3?Ce), (N(1114))(3) [Ln(dcnm)(6)] (4?Ln; 4?Ln=4?La, 4?Ce, 4?Pr, 4?Nd, 4?Sm, 4?Gd), and (N(1112OH) )(3) [Ce(dcnm)(6)] (5?Ce) (C(2) mim=1-ethyl-3-methylimidazolium, C(2) C(1) mim=1-ethyl-2,3-dimethylimidazolium, C(4) C(1) py=N-butyl-4-methylpyridinium, N(1114) =butyltrimethylammonium, N(1112OH) =2-(hydroxyethyl)trimethylammonium=choline). X-ray crystallography was used to determine the structures of complexes 1?La, 2?Pr, and 5?Ce, all of which contain [Ln(dcnm)(6)](3-) ions. Complexes 1?Ln and 2?Pr were all ionic liquids (ILs), with complex 3?Ce melting at 38.1?°C, the lowest melting point of any known complex containing the [Ln(dcnm)(6)](3-) trianion. The ammonium-based cations proved to be less suitable for forming ILs, with complexes 4?Sm and 4?Gd being the only salts with the N(1114) cation to have melting points below 100?°C. The choline-containing complex 5?Ce did not melt up to 160?°C, with the increase in melting point possibly being due to extensive hydrogen bonding, which could be inferred from the crystal structure of the complex.  相似文献   

8.
The synthesis and characterisation of the first neutral cerium dialkyl dithiocarbamate complexes, using a novel oxidative displacement of the amido ligands of [Ce[N(SiMe3)2]3] by tetraalkylthiuram disulfides [R2NC(S)S]2(R = Me, Et) in thf solution, are reported. In the absence of other donors, the complexes [Ce(kappa2-S2CNMe2)3(thf)2] and Ce(kappa2-S2CNEt2)3) 3 were obtained. The addition of a polypyridyl ligand allowed easy access to a range of complexes of general formula [Ce(kappa2-S2CNR2)3(L[intersection]L)][R = Me and L([intersection])L = 2,2'-bipy (4), or 4,7-diphenyl-1,10-phenanthroline (6); or R = Et and L[intersection]L = 2,2'-bipy (5)]. Brief exposure of the Ce(III) dithiocarbamate to oxygen gas afforded in high yield the diamagnetic, crystalline Ce(IV) dithiocarbamate [Ce(kappa2-S2CNEt2)4)] 7. The neodymium (8) and terbium (10) complexes, isoleptic with 2, were prepared from the appropriate 4f metal (Ln) bis(trimethylsilyl)amide [Ln[pN(SiMe3)2]3][Ln = Nd or Tb (9)] and [Me2NC(S)S]2. The structures of the crystalline complexes, 2, 4, 6, 7, 9 and 10 have been determined by X-ray crystallography. Some evidence has been obtained for the formation of the cerium(IV) complex Ce[N(SiMe3)2]2(kappa2-S2CNMe2)2. The cerium(IV) complex 7 has the metal coordinated to eight sulfur atoms of four planar chelating S2CNC2 moities and its geometry is intermediate between dodecahedral and square prismatic; the mean Ce-S bond length of 2.803 A in 7 compares with the 2.950 A in the Ce(III) complex 2.  相似文献   

9.
以乙酰丙酮(Hacac)、邻菲咯啉(phen)、硝酸根为配体,8-羟基喹啉为酸度调节剂合成出一个系列的镧系轻稀土四元配合物Ln(NO3)2(phen)2(CH3COCHCOCH3)(Ln=La,Ce,Pr,Nd,Sm)。配合物的结构与性质由元素分析,IR,1HNMR和TGA等表征。单晶Ce(NO3)2(phen)2(CH3COCHCOCH3)·H2O结构经由X射线衍射仪分析表明,晶体属单斜晶系,空间群P21/n,晶胞参数为a=1.11017(8)nm,b=0.98401(7)nm,c=1.34453(10)nm,β=102.0530(10)°,V=1.43641(18)nm3,Dc=1.715g·cm-3,Z=2,F(000)=742。配合物呈单核结构,中心离子Ce髥配位数为10。  相似文献   

10.
Han Y  Li X  Li L  Ma C  Shen Z  Song Y  You X 《Inorganic chemistry》2010,49(23):10781-10787
A series of 3-D lanthanide porous coordination polymers, [Ln(6)(BDC)(9)(DMF)(6)(H(2)O)(3)·3DMF](n) [Ln = La, 1; Ce, 2; Nd, 3], [Ln(2)(BDC)(3)(DMF)(2)(H(2)O)(2)](n) [Ln = Y, 4; Dy, 5; Eu, 6], [Ln(2)(ADB)(3)(DMSO)(4)·6DMSO·8H(2)O](n) [Ln = Ce, 7; Sm, 8; Eu, 9; Gd, 10], {[Ce(3)(ADB)(3)(HADB)(3)]·30DMSO·29H(2)O}(n) (11), and [Ce(2)(ADB)(3)(H(2)O)(3)](n) (12) (H(2)BDC = benzene-1,4-dicarboxylic acid and H(2)ADB = 4,4'-azodibenzoic acid), have been synthesized and characterized. In 1-3, the adjacent Ln(III) ions are intraconnected to form 1-D metal-carboxylate oxygen chain-shaped building units, [Ln(4)(CO(2))(12)](n), that constructed a 3-D framework with 4 × 7 ? rhombic channels. In 4-6, the dimeric Ln(III) ions are interlinked to yield scaffolds with 3-D interconnecting tunnels. Compounds 7-10 are all 3-D interpenetrating structures with the CaB6-type topology structure. Compound 11 is constructed by ADB spacers and trinulcear Ce nodes with a NaCl-type topology structure and a 1.9-nm open channel system. In 12, the adjacent Ce(III) ions are intraconnected to form 1-D metal-carboxylate oxygen chain-shaped building units, [Ln(4)(CO(2))(12)](n), and give rise to a 3-D framework. Moreover, 6 exhibits characteristic red luminescence properties of Eu(III) complexes. The magnetic susceptibilities, over a temperature range of 1.8-300 K, of 3, 6, and 7 have also been investigated; the results show paramagnetic properties.  相似文献   

11.
The protonation constants () of 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-3,6,9-triacetic acid (PCTA) and stability constants of complexes formed between this pyridine-containing macrocycle and several different metal ions have been determined in 1.0 M KCl at 25 degrees C and compared to previous literature values. The first protonation constant was found to be 0.5-0.6 log units higher than the value reported previously, and a total of five protonation steps were detected (log = 11.36, 7.35, 3.83, 2.12, and 1.29). The stability constants of complexes formed between PCTA and Mg2+, Ca2+, Cu2+, and Zn2+ were also somewhat higher than those previously reported, but this difference could be largely attributed to the higher first protonation constant of the ligand. Stability constants of complexes formed between PCTA and the Ln3+ series of ions and Y3+ were determined by using an "out-of-cell" potentiometric method. These values ranged from log K = 18.15 for Ce(PCTA) to log K = 20.63 for Yb(PCTA), increasing along the Ln series in proportion to decreasing Ln3+ cation size. The rates of complex formation for Ce(PCTA), Eu(PCTA), Y(PCTA), and Yb(PCTA) were followed by conventional UV-vis spectroscopy in the pH range 3.5-4.4. First-order rate constants (saturation kinetics) obtained for different ligand-to-metal ion ratios were consistent with the rapid formation of a diprotonated intermediate, Ln(H(2)PCTA)(2+). The stabilities of the intermediates as determined from the kinetic data were 2.81, 3.12, 2.97, and 2.69 log K units for Ce(H(2)PCTA), Eu(H(2)PCTA), Y(H(2)PCTA), and Yb(H(2)PCTA), respectively. Rearrangement of these intermediates to the fully chelated complexes was the rate-determining step, and the rate constant (k(r)) for this process was found to be inversely proportional to the proton concentration. The formation rates (k(OH)) increased with a decrease in the lanthanide ion size [9.68 x 10(7), 1.74 x 10(8), 1.13 x 10(8), and 1.11 x 10(9) M(-1) s(-1) for Ce(PCTA), Eu(PCTA), Y(PCTA), and Yb(PCTA), respectively]. These data indicate that the Ln(PCTA) complexes exhibit the fastest formation rates among all lanthanide macrocyclic ligand complexes studied to date. The acid-catalyzed dissociation rates (k1) varied with the cation from 9.61 x 10(-4), 5.08 x 10(-4), 1.07 x 10(-3), and 2.80 x 10(-4) M(-1) s(-1) for Ce(PCTA), Eu(PCTA), Y(PCTA), and Yb(PCTA), respectively.  相似文献   

12.
A new class of homoleptic organoamido rare earth complexes [Ln(L(Me) or L(Et))(3)] (Ln = La, Ce, Nd; L(Me/Et) = p-HC(6)F(4)N(CH(2))(2)NMe(2)/Et(2)) exhibiting (Ar)CF-Ln interactions has been isolated from redox-transmetallation/protolysis (RTP) reactions between the free metals, Hg(C(6)F(5))(2) and L(Me/Et)H in tetrahydrofuran, together with low yields of [Ln(L(Me))(2)F](3) (Ln = La, Ce) or [Nd(L(Et))(2)F](2) species, resulting from C-F activation reactions. The structures of the homoleptic complexes have eight-coordinate Ln metals with two tridentate (N,N',F) amide ligands including (Ar)CF-Ln bonds and either a bidentate (N,F) ligand (Ln = La, Ce, Nd; L(Et)) or a bidentate (N,N') ligand (Ln = Nd; L(Me)), in an unusual case of linkage variation. All (Ar)CF-Ln bond lengths are shorter than or similar to the corresponding Ln-NMe(2)/Et(2) bond lengths. In [Ln(L(Me))(2)F](3) (Ln = La, Ce) complexes, there is a six-membered ring framework with alternating F and Ln atoms and the metal atoms are eight-coordinate with two tridentate (N,N',F) L(Me) ligands, whilst [Nd(L(Et))(2)F](2) is a fluoride-bridged dimer.  相似文献   

13.
Reaction of the lanthanide metallocene allyl complexes, (C(5)Me(5))(2)Ln(eta(3)-CH(2)CHCH(2))(THF) (Ln = Ce, Sm, Y) with 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine, Hhpp, forms a series of metallocene complexes, (C(5)Me(5))(2)Ln(hpp) (Ln = Ce, Sm, Y) in which the (hpp)(1-) anion coordinates as a terminal bidentate ligand. Isomorphous structures were observed by X-ray crystallography regardless of the size of the metal. The acetonitrile adduct, (C(5)Me(5))(2)Sm(hpp)(MeCN), was also crystallographically characterized to provide an unusual pair of eight- and nine-coordinate complexes. The coordination mode of the (hpp)(1-) anion in these complexes is compared with that in other heteroallylic metallocenes like the caprolactamate (C(5)Me(5))(2)Y(ONC(6)H(10)) and the dithiocarbamate (C(5)Me(5))(2)Sm(S(2)CNEt(2)), which was also structurally characterized.  相似文献   

14.
稀土组氨酸配合物的合成和性质研究   总被引:1,自引:0,他引:1  
本文合成了十二个稀土与L-组氨酸(L-His)的固体配合物,元素分析结果表明配合物的组成为Ln(His)3(NO3)32H2O(Ln=Y,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Er,Tm)。并通过配合物的IR、UV、H-NMR、TG-DTA、磁化率及在水中的摩尔电导等的研究,表征了这些配合物的物理化学性质,结果表明稀土组氨配合物中配体通过羟基氧原子与镧系离子配位。  相似文献   

15.
稀土-邻菲罗啉-氟尿嘧啶三元配合物的合成及表征   总被引:4,自引:1,他引:4  
合成了七种稀土硝酸盐-邻菲罗啉(phen)-氟尿嘧啶(Fu)的三元固体配合物。分别进行了元素分析,摩尔电导率的测定和红外光谱、热重、差热分析的研究,确证该配合物的化学式为[Ln(phen)2(Fu)(NO3)](NO3)2(Ln=Y、La、Ce、Nd、Sm、Gd、Ho)。此外,对La的三元配合物进行了13C核磁共振谱的测定,并通过体外癌细胞瘤株抑制率的试验,表明配合物有明显的抗肿瘤效果。  相似文献   

16.
余玉叶 《化学研究》2006,17(1):16-19
合成了双水杨醛缩1,10-癸二胺Sch iff碱配体(C24H32N2O2,以L表示)与稀土Ln3+的15种新的固体配合物[LnL(NO3)3].nH2O(Ln=La,Ce,Pr,Nd,Sm,Eu,n=0;Ln=Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Y,n=1).利用元素分析、摩尔电导、红外光谱、热分析等方法进行表征.中心金属离子Ln3+与Sch iff碱配体中的酚羟基氧以及硝酸根中的氧发生配位,配位数为8.  相似文献   

17.
Complexes of lanthanoid trinitrates Ln(NO3)3 with 15-crown-5 ether 1 (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd) and with 18-crown-6 ether 2 (Ln = La, Ce, Pr, Nd) having a 1:1 stoichiometry as well as 4:3 complexes with 2 (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd) have been synthesized and characterized. All the isolated complexes are solvent free. At 170–220° the 1:1 complexes of 2 are quantitatively transformed into 4:3 complexes. X-Ray powder diagrams of the neodymium complexes with 2 indicate that both the 1:1 and 4:3 complexes are genuine compounds. All the 1:1 complexes show a characteristic IR. absorption band at 875–880 cm?1 absent from both the spectra of the free ligands and of the 4:3 complexes. The spectroscopic properties (IR. and electronic spectra, fluorescence lifetimes) of the complexes and the low magnetic moments of the Ln(III) ions in the complexes with Ln = Ce-Eu are indicative of a strong interaction between the lanthanoid ions and the crown ethers 1 and 2 .  相似文献   

18.
Reactions of Ln(BH4)3(THF)n and [Li(Et2O)]SPS(Me)], the lithium salt of an anionic SPS pincer ligand composed of a central hypervalent lambda4-phosphinine ring bearing two ortho-positioned diphenylphosphine sulfide sidearms, led to the monosubstituted compounds [Ln(BH4)2(SPS(Me))(THF)2] [Ln = Ce (1), Nd (2)], while the homoleptic complexes [Ln(SPS(Me))3] [Ln = Ce (3), Nd (4)] were obtained by treatment of LnX3 (X = I, BH4) with [K(Et2O)][SPS(Me)]. The [UX2(SPS(Me))2] complexes [X = Cl (5), BH4 (6)] were isolated from reactions of UX4 and the lithium or potassium salt of the [SPS(Me)]- anion. The X-ray crystal structures of 1.1.5THF, 2.1.5THF, 3.2THF.2Et2O, and 5.4py reveal that the flexible tridentate [SPS(Me)]- anion is bound to the metal as a tertiary phosphine with electronic delocalization within the unsaturated parts of the ligand.  相似文献   

19.
Russian Chemical Bulletin - Electronic structures of a series oflanthanide complexes with hexafluoroisopropoxide ligands [Ln(OCH(CF3)2)2(μ2-OCH(CF3)2)(DME)]2 (Ln = Ce, Sm, Tm, Yb; DME is...  相似文献   

20.
Black single crystals of the two nonstoichiometric cerium coinage-metal oxysulfide compounds CeCu(x)OS and CeAg(x)OS (x approximately 0.8) have been prepared by the reactions of Ce2S3 and CuO or Ag2O at 1223 or 1173 K, respectively. A black powder sample of CeAgOS has been prepared by the stoichiometric reaction of Ce2S3, CeO2, Ag2S, and Ag at 1073 K. These isostructural materials crystallize in the ZrSiCuAs structure type with two formula units in the tetragonal space group P4/nmm. Refined crystal structure results and chemical analyses provide evidence that the previously known anomalously small unit-cell volume of LnCuOS for Ln = Ce (Ln = rare-earth metal) is the result of Cu vacancies and the concomitant presence of both Ce3+ and Ce4+. Both CeCu(0.8)OS and CeAgOS are paramagnetic with mu(eff) values of 2.13(6) and 2.10(1) mu(B), respectively. CeCu(0.8)OS is a p-type semiconductor with a thermal activation energy Ea = 0.22 eV, sigma(electrical) = 9.8(1) 10(-3) S/cm at 298 K, and an optical band gap Eg < 0.73 eV. CeAgOS has conductivity sigma(conductivity) = 0.16(4) S/cm and an optical band gap Eg = 0.71 eV at 298 K. Theoretical calculations with an on-site Coulomb repulsion parameter indicate that the Ce 4f states are fully spin-polarized and are not localized in CeCuOS, CeCu(0.75)OS, or CeAgOS. Calculated band gaps for CeCu(0.75)OS and CeAgOS are 0.6 and 0.8 eV, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号