首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 779 毫秒
1.
李登峰  李柏林  肖海燕  董会宁 《中国物理 B》2011,20(6):67101-067101
The electronic properties of twinned ZnS nanowires (NWs) with different diameters were investigated based on first-principles calculations. The energy band structures, projected density of states and the spatial distributions of the bottom of conduction band and the top of the valence band were presented. The results show that the twinned nanowires exhibit a semiconducting character and the band gap decreases with increasing nanowire diameter due to quantum confinement effects. The valence band maximum and conduction band minimum originate mainly from the S-p and Zn-s orbitals at the core of the nanowires, respectively, which was confirmed by their spatial charge density distribution. We also found that no heterostructure is formed in the twinned ZnS NWs since the valence band maximum and conduction band minimum states are distributed along the NW axis uniformly. We suggest that the hexagonal (2H) stacking inside the cubic (3C) stacking has no effect on the electronic properties of thin ZnS NWs.  相似文献   

2.
The electronic properties of twinned ZnS nanowires (NWs) with different diameters were investigated based on first-principles calculations. The energy band structures, projected density of states and the spatial distributions of the bottom of conduction band and the top of the valence band were presented. The results show that the twinned nanowires exhibit a semiconducting character and the band gap decreases with increasing nanowire diameter due to quantum confinement effects. The valence band maximum and conduction band minimum originate mainly from the S-p and Zn-s orbitals at the core of the nanowires, respectively, which was confirmed by their spatial charge density distribution. We also found that no heterostructure is formed in the twinned ZnS NWs since the valence band maximum and conduction band minimum states are distributed along the NW axis uniformly. We suggest that the hexagonal (2H) stacking inside the cubic (3C) stacking has no effect on the electronic properties of thin ZnS NWs.  相似文献   

3.
王顺  杜宇雷  廖文和 《中国物理 B》2017,26(1):17806-017806
Using the density functional theory, we have investigated the electronic and optical properties of two-dimensional Sc_2C monolayer with OH, F, or O chemical groups. The electronic structures reveal that the functionalized Sc_2C monolayers are semiconductors with a band gap of 0.44–1.55 eV. The band gap dependent optical parameters, like dielectric function, absorption coefficients, reflectivity, loss function, and refraction index were also calculated for photon energy up to 20 eV. At the low-energy region, each optical parameter shifts to red, and the peak increases obviously with the increase of the energy gap. Consequently, Sc_2C monolayer with a tunable band gap by changing the type of surface chemical groups is a promising 2D material for optoelectronic devices.  相似文献   

4.
The ab initio method within the local density approximation is applied to calculate cubic BaTiO3 (001) surface relaxation and rumpling for two different terminations (BaO and TiO2 ). Our calculations demonstrate that cubic perovskite BaTiO3 crystals possess surface polarization, accompanied by the presence of the relevant electric field. We analyse their electronic structures (band structure, density of states and the electronic density redistribution with emphasis on the covalency effects). The results are also compared with that of the previous ab initio calculations. Considerable increases of Ti-O chemical bond covalency nearby the surface have been observed. The band gap reduces especially for the TiO2 termination.  相似文献   

5.
The geometrical and electronic structures of nitrogen-doped β-SiC are investigated by employing the first principles of plane wave ultra-soft pseudo-potential technology based on density functional theory. The structures of SiC1-xNx (x = 0, 1/32, 1/16, 1/8, 1/4) with different doping concentrations are optimized. The results reveal that the band gap of β-SiC transforms from an indirect band gap to a direct band gap with band gap shrinkage after carbon atoms are replaced by nitrogen atoms. The Fermi level shifts from valence band top to conduction band by doping nitrogen in pure β-SiC, and the doped β-SiC becomes metallic. The degree of Fermi levels entering into the conduction band increases with the increment of doping concentration; however, the band gap becomes narrower. This is attributed to defects with negative electricity occurring in surrounding silicon atoms. With the increase of doping concentration, more residual electrons, more easily captured by the 3p orbit in the silicon atom, will be provided by nitrogen atoms to form more defects with negative electricity.  相似文献   

6.
The first-principles total energy calculations with the local density approximation (LDA) and the plane wave pseudopotential method are employed to investigate the structural properties and electronic structures of Li3AlN2. The calculated lattice constants and internal coordination of atoms agree well with the experimental results. Detailed studies of the electronic structure and the charge-density redistribution reveal the features of the strong ionicity bonding of Al-N and Al-Li, and strong hybridizations between Li and N in Li3AlN2. Our band structure calculation verifies Li3AlN2 is a direct gap semiconductor with the LDA gap value of about 2.97eV and transition at Г.  相似文献   

7.
In this paper, electronic and thermoelectric properties of Mg_2C are investigated by using first principle pseudo potential method based on density functional theory and Boltzmann transport equations. We calculate the lattice parameters,bulk modulus, band gap and thermoelectric properties(Seebeck coefficient, electrical conductivity, and thermal conductivity) of this material at different temperatures and compare them with available experimental and other theoretical data. The calculations show that Mg_2C is indirect band semiconductor with a band gap of 0.75 eV. The negative value of Seebeck coefficient shows that the conduction is due to electrons. The electrical conductivity decreases with temperature and Power factor(PF) increases with temperature. The thermoelectric properties of Mg_2C have been calculated in a temperature range of 100 K–1200 K.  相似文献   

8.
In this work, we investigate strain effects induced by the deposition of gate dielectrics on the valence band structures in Si (110) nanowire via the simulation of strain distribution and the calculation of a generalized 6 × 6k$\cdot$p strained valence band. The nanowire is surrounded by the gate dielectric. Our simulation indicates that the strain of the amorphous SiO2 insulator is negligible without considering temperature factors. On the other hand, the thermal residual strain in a nanowire with amorphous SiO2 insulator which has negligible lattice misfit strain pushes the valence subbands upwards by chemical vapour deposition and downwards by thermal oxidation treatment. In contrast with the strain of the amorphous SiO2 insulator, the strain of the HfO2 gate insulator in Si (110) nanowire pushes the valence subbands upwards remarkably. The thermal residual strain by HfO2 insulator contributes to the up-shifting tendency. Our simulation results for valence band shifting and warping in Si nanowires can provide useful guidance for further nanowire device design.  相似文献   

9.
First-principles local density functional calculations are presented for the compounds ZnGa2X4 (X = S, Se). We investigate the bulk moduli and electronic band structures in a defect chalcopyrite structure. The lattice constants and internal parameters are optimized. The electronic structures are analysed with the help of total and partial density of states. The relation between the cohesive energy and the unit cell volume is obtained by fully relaxed structures. We derive the bulk modulus of ZnGa2Xa by fitting the Birch-Murnaghan's equation of state. The extended Cohen's empirical formula agrees well with our ab initio results.  相似文献   

10.
郭三栋 《中国物理 B》2016,25(5):57104-057104
We investigate magnetic ordering and electronic structures of Cr_2MoO_6under hydrostatic pressure. To overcome the band gap problem, the modified Becke and Johnson exchange potential is used to investigate the electronic structures of Cr_2MoO_6. The insulating nature at the experimental crystal structure is produced, with a band gap of 1.04 eV, and the magnetic moment of the Cr atom is 2.50 μB, compared to an experimental value of about 2.47 μB. The calculated results show that an antiferromagnetic inter-bilayer coupling–ferromagnetic intra-bilayer coupling to a ferromagnetic inter-bilayer coupling–antiferromagnetic intra-bilayer coupling phase transition is produced with the pressure increasing. The magnetic phase transition is simultaneously accompanied by a semiconductor–metal phase transition. The magnetic phase transition can be explained by the Mo–O hybridization strength, and ferromagnetic coupling between two Cr atoms can be understood by empty Mo-d bands perturbing the nearest O-p orbital.  相似文献   

11.
采用密度泛函理论计算方法系统研究了B36团簇组装一维纳米线的几何结构、电子结构及稳定性.发现两种不同构型的B36团簇组装纳米线静态结构能量相同,且均为动力学稳定结构,但二者电子结构明显不同:分别呈现出半金属和小带隙半导体特征.对两类纳米线的H原子吸附显示:半金属纳米线转变为半导体,而半导体纳米线仍保持为半导体,但带隙明显增大.表明H原子吸附对于B36团簇组装纳米线的电子结构具有明显的调控作用.  相似文献   

12.
利用基于密度泛函理论的第一性原理计算,对镍掺杂硅纳米线的结构稳定性、电子与光学性质进行了研究.结果表明:Ni容易占据硅纳米线表面的替代位置.镍掺杂后的硅纳米线引入了杂质能级,杂质能级主要来源于Ni的3d电子的贡献.由于Ni的3d态和Si的3p态的耦合作用,使禁带宽度变窄.掺杂后的硅纳米线在低能区出现了一个较强的吸收峰,且吸收带出现宽化现象. 关键词: 硅纳米线 掺杂 电子结构 光学性质  相似文献   

13.
张勇  施毅敏  包优赈  喻霞  谢忠祥  宁锋 《物理学报》2017,66(19):197302-197302
纳米线表面存在大量的表面态,它们能够引起电子分布在纳米线表面,使得纳米线的电学性质对表面条件变得更加敏感,严重地制约器件的性能.表面钝化能够有效地移除纳米线的表面态,进而能够有效地优化器件的性能.采用基于密度泛函理论的第一性原理计算方法研究了表面钝化效应对GaAs纳米线电子结构性质的影响.考虑了不同的钝化材料,包括氢元素、氟元素、氯元素和溴元素.研究结果表明:具有小尺寸的GaAs裸纳米线的能带结构呈间接带隙特征,表面经过完全钝化后,转变为直接带隙特征;GaAs纳米线表面经过氢元素不同位置和不同比例钝化后,展示出不同的电学性质;表面钝化的物理机理是钝化原子与纳米线表面原子通过电荷补偿移除纳米线表面的电子态;与氢元素钝化相比,GaAs纳米线表面经过氟元素、氯元素和溴元素钝化后,带隙宽度较小,原因是氟元素、氯元素和溴元素在钝化过程中具有较小的电荷补偿能力,不能完全移除表面态.  相似文献   

14.
李立明  宁锋  唐黎明 《物理学报》2015,64(22):227303-227303
采用基于密度泛函理论的第一性原理计算方法, 研究了不同晶体结构和尺寸的GaSb纳米线能带结构特性和载流子的有效质量, 以及单轴应力对GaSb纳米线能带结构的调控. 研究结果表明: 闪锌矿结构[111]方向和纤锌矿结构[0001]方向的小尺寸GaSb纳米线均出现间接带隙的能带结构, 并可通过单轴应力来实现纳米线能带结构由间接带隙到直接带隙的转变, 其中, 闪锌矿结构[111]方向GaSb纳米线仅在受到单轴拉伸应力时才发生能带由间接带隙到直接带隙的转变, 而纤锌矿结构[0001]方向GaSb纳米线无论受单轴拉伸还是压缩应力的作用均可实现能带由间接带隙到直接带隙的转变; [111]和[0001]方向GaSb纳米线的带隙和载流子有效质量与纳米线直径呈非线性关系, 并随纳米线直径的减小而增大; 同一方向和尺寸的GaSb纳米线, 其空穴有效质量要小于电子有效质量, 这表明小尺寸GaSb纳米线有利于空穴载流子输运.  相似文献   

15.
In this work, the electronic structures of pure and concentrated graphene and Silicene have been studied by performing first-principles pseudo potential plane-wave calculations. The concentrated structures have been obtained by the substitution of Si(C) atoms in the graphene (silicene), respectively. Firstly, the calculations are performed for pure graphene and continued for its concentrations. The concentrated graphene is obtained by substitution of Si atoms (with: 12.5, 25, 37.5 and 50 mol percentage) at different positions in the unit cell of graphene. Similar to graphene, the same calculations are performed for pure silicene as well as for silicene after substitution of C atoms. We have modeled the lattice constant, the band structure and its directivity, while the position and mole fractions of the substituted atoms are changed in the unit cell of the studied compound. Our results showed that: the total energy, the density of States (DOS), the charge density (CD), the opening of the band gap and its directivity are strongly dependent both on the position and mole fraction of the substituted Si(C) atoms. As an interesting result, we found an indirect open band gap, as large as 2.53 eV for silicon doped graphene. Also, it was found that both the elemental concentration and unit cell geometry could offer remarkable advantages for band splitting and band gap opening in these graphene like structures, which have known as ideal structures with many promising potential applications in the electronic, optoelectronic and spintronic.  相似文献   

16.
Using first-principle calculations, mechanical properties, electronic structure, and Raman spectra of LiB6Si structure were investigated. The band structures calculated by GGA-PBE and HSE06 methods reveal that LiB6Si is an indirect band gap semiconductor. The band gap estimated by HSE06 method is about 2.24 eV, which is in good agreement with that of experimental value 2.27 eV. The calculated tensile stress-strain curves of LiB6Si reveal that [010] direction is the cleavage direction under tensile strains. The calculated Raman spectra of LiB6Si are also in good agreement with that of measured. The position of the band gap may provide a basis for further photocatalysis research on LiB6Si.  相似文献   

17.
《Physics letters. A》2014,378(26-27):1841-1844
Using first-principles calculations, we have systematically studied the effects of the interplay between Si dopants in graphene. Four stable Si-pair doping configurations have been predicted and investigated. It is shown that the Si dopants tend to agglomerate in graphene. In particular, the band structures can be remarkably modulated by the doping sites of Si atoms in graphene. With the change of the Si–Si distance, the electronic structures can be widely tuned to exhibit isotropic, direction-dependent, and semiconducting properties. Based on this unique interplay effect, we reveal two ordered C–Si alloys, CSi and C3Si. It is found that CSi has an indirect band gap of 2.5 eV while C3Si still retains the Dirac features. Our results suggest that more remarkable electronic properties of graphene can be obtained by controllable tuning of the multi-doping of Si in graphene.  相似文献   

18.
基于密度泛函第一性原理计算,系统研究了Mg12O12笼状团簇组装一维纳米线及其掺杂3d族元素体系的几何结构与电子结构。结果表明:Mg12O12团簇组装一维纳米线为非磁性半导体,带隙值为3.16 eV;掺杂Sc和V后,体系由半导体转变为金属;掺杂Ti、Cr、Mn、Fe、Co、Ni、Cu后体系仍然保持半导体特性、但带隙值明显减小,而掺杂Zn时带隙值变化不大;掺杂V、Cr、Mn、Fe、Co、Ni、Cu后纳米线具有磁性。  相似文献   

19.
We predict a series of new two-dimensional(2D) inorganic materials made of silicon and carbon elements(2D SixC1?x) based on density functional theory. Our calculations on optimized structure, phonon dispersion, and finite temperature molecular dynamics confirm the stability of 2D SixC1?x sheets in a two-dimensional, graphene-like, honeycomb lattice. The electronic band gaps vary from zero to 2.5 e V as the ratio x changes in 2D SixC1?x changes, suggesting a versatile electronic structure in these sheets. Interestingly, among these structures Si0.25C0.75 and Si0.75C0.25 with graphene-like superlattices are semimetals with zero band gap as their ? and ?* bands cross linearly at the Fermi level. Atomic structural searches based on particle-swarm optimization show that the ordered 2D SixC1?x structures are energetically favorable. Optical absorption calculations demonstrate that the 2D silicon-carbon hybrid materials have strong photoabsorption in visible light region, which hold promising potential in photovoltaic applications. Such unique electronic and optical properties in 2D SixC1?x have profound implications in nanoelectronic and photovoltaic device applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号