首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Mott metal-insulator transition in the two-band Hubbard model in infinite dimensions is studied by using the linearized dynamical mean-field theory recently developed by Bulla and Potthoff. The phase boundary of the metal-insulator transition is obtained analytically as a function of the on-site Coulomb interaction at the d-orbital, the charge-transfer energy between the d- and p-orbitals and the hopping integrals between p-d, d-d and p-p orbitals. The result is in good agreement with the numerical results obtained from the exact diagonalization method. Received 5 October 2000 and Received in final form 8 December 2000  相似文献   

2.
We propose FeSb2 to be a nearly ferromagnetic small gap semiconductor, hence a direct analog of FeSi. We find that despite different compositions and crystal structures, in the local density approximation with on-site Coulomb repulsion correction (LDA+U) method magnetic and semiconducting solutions for U=2.6 eV are energetically degenerate similar to the case of FeSi. For both FeSb2 and FeSi (FeSi1-xGex alloys) the underlying transition mechanism allows one to switch from a small gap semiconductor to a ferromagnetic metal with magnetic moment ≈1 μB per Fe ion with external magnetic field.  相似文献   

3.
A new numerical method is used to study the ground-state properties of the spinless Falicov-Kimball model in one and two dimensions. The resultant solutions are used to examine the phase diagram of the model as well as possibilities for valence and metal-insulator transitions. In one dimension a comprehensive phase diagram of the model is presented. On the base of this phase diagram, the complete picture of valence and metal-insulator transitions is discussed. In two dimensions the structure of ground-state configurations is described for intermediate interactions between f and d electrons. In this region the phase separation and metal-insulator transitions are found at low f-electron concentrations. It is shown that valence transitions exhibit a staircase structure. Received 20 October 2000  相似文献   

4.
We study the (spinless) Falicov-Kimball model extended by a finite band width (hopping t f ) of the localized (f-) electrons in infinite dimensions in the weak-coupling limit of a small local interband Coulomb correlation U for half filling. In the case of overlapping conduction- and f-bands different kinds of ordered solutions are possible, namely charge-density wave (CDW) order, electronic ferroelectricity (EFE) and electronic antiferroelectricity (EAFE). The order parameters are calculated as a function of the model parameters and of the temperature. There is a first-order phase transition from the CDW-phase to the EFE- or EAFE-phase. The total energy is calculated to determine the thermodynamically stable solution. The quantum phase diagrams are calculated.  相似文献   

5.
We study the influence of many-particle interactions on a metal-insulator transition. We consider the two-interacting-particle problem for onsite interacting particles on a one-dimensional quasiperiodic chain, the so-called Aubry-André model. We show numerically by the decimation method and finite-size scaling that the interaction does not modify the critical parameters such as the transition point and the localization-length exponent. We compare our results to the case of finite density systems studied by means of the density-matrix renormalization scheme. Received 28 June 2001  相似文献   

6.
We apply a diagrammatic expansion method around the atomic limit () for the U-t-t ' Hubbard model at half filling and finite temperature by means of a continued fraction representation of the one-particle Green's function. From the analysis of the spectral function we find an energy dispersion relation with a modulation of the energy gap in the insulating phase. This anisotropy is compared with experimental ARPES results on insulating cuprates. Received 18 May 2000 and Received in final form 9 August 2000  相似文献   

7.
8.
Specific heat versus temperature curves for various pressures, or magnetic fields (or some other external control parameter) have been seen to cross at a point or in a very small range of temperatures in many correlated fermion systems. We show that this behavior is related to the possibility of existence of a quantum critical point. Vicinity to a quantum critical point in these systems leads to a crossover from quantum to classical fluctuation regime at some temperature . The temperature at which the curves cross turns out to be near this crossover temperature. We have discussed the case of the normal phase of liquid Helium three and the heavy fermion systems CeAl3 and UBe13 in detail within the spin fluctuation theory, a theory which inherently contains a low energy scale which can be identified with . When the crossover scale is a homogeneous function of these control parameters there is always crossing at a point. We also mention other theories exhibiting a low energy scale near a quantum critical point and discuss this phenomenon in those theories. Received 25 June 1999  相似文献   

9.
To investigate the influence of electronic interaction on the metal-insulator transition (MIT), we consider the Aubry-André (or Harper) model which describes a quasiperiodic one-dimensional quantum system of non-interacting electrons and exhibits an MIT. For a two-particle system, we study the effect of a Hubbard interaction on the transition by means of the transfer-matrix method and finite-size scaling. In agreement with previous studies we find that the interaction localizes some states in the otherwise metallic phase of the system. Nevertheless, the MIT remains unaffected by the interaction. For a long-range interaction, many more states become localized for sufficiently large interaction strength and the MIT appears to shift towards smaller quasiperiodic potential strength. Received 17 August 1998  相似文献   

10.
We discuss the ground state magnetic phase diagram of the Hubbard model off half filling within the dynamical mean-field theory. The effective single-impurity Anderson model is solved by Wilson's numerical renormalization group calculations, adapted to symmetry broken phases. We find a phase separated, antiferromagnetic state up to a critical doping for small and intermediate values of U, but could not stabilize a Néel state for large U and finite doping. At very large U, the phase diagram exhibits an island with a ferromagnetic ground state. Spectral properties in the ordered phases are discussed. Received 9 January 2002 Published online 25 June 2002  相似文献   

11.
We have studied the critical behaviour of a doped Mott insulator near the metal-insulator transition for the infinite-dimensional Hubbard model using a linearized form of dynamical mean-field theory. The discontinuity in the chemical potential in the change from hole to electron doping, for U larger than a critical value U c, has been calculated analytically and is found to be in good agreement with the results of numerical methods. We have also derived analytic expressions for the compressibility, the quasiparticle weight, the double occupancy and the local spin susceptibility near half-filling as functions of the on-site Coulomb interaction and the doping. Received 15 March 2001 and Received in final form 22 May 2001  相似文献   

12.
The Kondo divergences owing to interaction of current carriers with local moments in highly correlated electron systems are considered within the Hubbard and s-d exchange models with infinitely strong on-site interaction, the many-electron Hubbard representation being used. The picture of density of states containing a peak at the Fermi level is obtained. Various forms of the self-consistent approximation are used. The problem of the violation of analytical properties of the Green's function is discussed. Smearing of the “Kondo” peak owing to spin dynamics and finite temperatures is investigated. Received 25 November 1999 and Received in final form 31 January 2000  相似文献   

13.
The Mott-Hubbard metal-insulator transition is studied within a simplified version of the Dynamical Mean-Field Theory (DMFT) in which the coupling between the impurity level and the conduction band is approximated by a single pole at the Fermi energy. In this approach, the DMFT equations are linearized, and the value for the critical Coulomb repulsion can be calculated analytically. For the symmetric single-band Hubbard model at zero temperature, the critical value is found to be given by 6 times the square root of the second moment of the free (U=0) density of states. This result is in good agreement with the numerical value obtained from the Projective Selfconsistent Method and recent Numerical Renormalization Group calculations for the Bethe and the hypercubic lattice in infinite dimensions. The generalization to more complicated lattices is discussed. The “linearized DMFT” yields plausible results for the complete geometry dependence of the critical interaction. Received 6 May 1999 and Received in final form 2 July 1999  相似文献   

14.
We use the Random Dispersion Approximation (RDA) to study the Mott-Hubbard transition in the Hubbard model at half band filling. The RDA becomes exact for the Hubbard model in infinite dimensions. We implement the RDA on finite chains and employ the Lanczos exact diagonalization method in real space to calculate the ground-state energy, the average double occupancy, the charge gap, the momentum distribution, and the quasi-particle weight. We find a satisfactory agreement with perturbative results in the weak- and strong-coupling limits. A straightforward extrapolation of the RDA data for L ≤ 14 lattice results in a continuous Mott-Hubbard transition at Uc≈W. We discuss the significance of a possible signature of a coexistence region between insulating and metallic ground states in the RDA that would correspond to the scenario of a discontinuous Mott-Hubbard transition as found in numerical investigations of the Dynamical Mean-Field Theory for the Hubbard model.  相似文献   

15.
We present magnetic properties of the three-band Hubbard model in the para- and antiferromagnetic phase on a hypercubic lattice calculated with the Dynamical Mean-Field Theory (DMFT). To allow for solutions with broken spin-symmetry we extended the approach to lattices with AB-like structure. Above a critical sublattice magnetization one can observe rich structures in the spectral-functions similar to the t-J model which can be related to the well known bound states for one hole in the Neél-background. In addition to the one-particle properties we discuss the static spin-susceptibility in the paramagnetic state at the points and for different dopings . The -T-phase-diagram exhibits an enhanced stability of the antiferromagnetic state for electron-doped systems in comparison to hole-doped. This asymmetry in the phase diagram is in qualitative agreement with experiments for high-Tc materials. Received: 28 May 1998 / Revised and Accepted: 14 September 1998  相似文献   

16.
This paper gives a simplified model of the double exchange which is a kind of indirect exchange interaction between localized magnetic moments. The presented model is solved exactly in the case of infinite - dimensional space. Equations for single-particle Green's function and magnetization of the localized spins subsystem are obtained. It is shown that our simple double exchange model reveals an instability to the ferromagnetic ordering of localized moments. Magnetic and electric properties of this system on Bethe lattice with are investigated in detail. Received: 24 January 1997 / Revised: 14 February 1997 / Received in final form: 18 August 1997 / Accepted: 25 August 1997  相似文献   

17.
The optical absorption in ferromagnetic metal La1-xSrxMnO3 is anomalous; it has a wide-range absorption up to about 1 eV even at zero temperature. Since 3d electrons in La1-xSrxMnO3 partially fill doubly degenerate eg orbitals, the orbital degrees of freedom are crucial to understand this metallic system. We argue that the interband transition within eg orbitals is important in the optical absorption. The optical spectrum is modified also by the inter-orbital Coulomb interaction. We have examined perturbatively the effect of the Coulomb interaction on the spectrum. Available experiments are discussed by comparing with the present results. Received: 13 February 1998 / Accepted: 17 March 1998  相似文献   

18.
Using the numerical renormalization group method, the dependences on temperature of the magnetic susceptibility χ(T) and specific heat C(T) are obtained for the single-impurity Anderson model with inclusion of d-f the Coulomb interaction. It is shown that the exciton effects caused by this effect (charge fluctuations) can significantly change the behaviour of C(T) in comparison with the standard Anderson model at moderately low temperatures, whereas the behaviour of χ(T) remains nearly universal. The ground-state and temperature-dependent renormalizations of the effective hybridization parameter and f-level position caused by the d-f interaction are calculated, and satisfactory agreement with the Hartree-Fock approximation is derived.  相似文献   

19.
We study one-particle spectra and the electronic band-structure of a CuO 2 -plane within the three-band Hubbard model. The Dynamical Mean-Field Theory (DMFT) is used to solve the many particle problem. The calculations show that the optical gap is given by excitations from the lower Hubbard band into the so called Zhang-Rice singlet band. The optical gap turns out to be considerably smaller than the bare charge transfer energy () for a typical set of parameters, which is in agreement with experiment. We also investigate the dependence of the shape of the Fermi surface on the different hopping parameters t CuO and t OO. A value t OO / t CuO >0 leads to a Fermi surface surrounding the M point. Received 21 September 1998 and Received in final form 8 June 1999  相似文献   

20.
The method used earlier for analysis of correlated nanoscopic systems is extended to infinite (periodic) s-band-like systems described by the Hubbard model. The optimized single-particle Wannier wave functions contained in the parameters of the extended Hubbard model (in the nearest-neghbor hopping (-t), in the magnitude of the intraatomic interaction U, and in other parameters) are determined explicitly in the correlated state for the electronic systems of various symmetries and dimensions: Hubbard chain, square and triangular planar lattices, and the three cubic lattices (SC, BCC, FCC). In effect, the evolution of the electronic properties as a function of interatomic distance R is obtained. The model parameters in most cases do not scale linearly with the lattice spacing and hence, their solution as a function of microscopic parameters reflects only qualitatively the system evolution. Also, the atomic energy changes with R and therefore should be included in the model analysis. The solutions in one dimension (D = 1) can be analyzed both rigorously (by making use of the Lieb–Wu solution) and compared with the approximate Gutzwiller treatments. In higher dimensions (D = 2 and 3) only the latter approach is possible to implement within the scheme. The renormalized single particle wave functions are almost independent of the choice of the scheme selected to diagonalize the Hamiltonian in the Fock space in D = 1 case. For dimensions D > 1 the qualitative behavior is independent of the structure considered. The wave-function size increases above the Mott-Hubbard localization threshold and gradually reaches the atomic limit value. The method can be extended to other approximation schemes, as stressed at the end.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号