首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The main objective of this study was to investigate the amine-catalyzed isomerization of dimethyl maleate into dimethyl fumarate in order to utilize the former as a prodrug for the latter. Mechanistic study of this reaction using DFT at B3LYP/6-31G(d,p) level revealed that the reaction is first order in dimethyl maleate, second order in the amine, and overall third order. Moreover, the calculations revealed the existence of a linear correlation between the basicity of the amine catalyst and the isomerization rate.  相似文献   

2.
The influence of ligand structure of hafnocenes on activation of the polymerization catalysts has been studied by quantum chemical methods. Altogether 54 hafnocenes were included in the analysis, supplemented by four zirconocenes for comparison. The trends in structural and electronic parameters relevant in the catalyst activation step were studied for the dichloride, dimethyl and cationic monomethyl forms of the catalysts. The effects of ligand modifications were analyzed as functions of the metal, ancillary cyclopentadienyl-based ligand, ligand substituent and the ligand bridge, making comparisons to experimental data. Generally, large aromatic ligands together with electron donating ligand substituents stabilize the catalytically active species, thus facilitating the catalyst activation process. The obtained trends are expected to aid in the development of new high-performance polymerization catalysts.  相似文献   

3.
A theoretical study of the molecular mechanism and stereoselectivity of the Diels-Alder cycloaddition reaction between difluoro-2-methylencyclopropane and furan has been carried out at the B3LYP/6-31G+∗∗ level of theory. The calculation of activation and reaction energies indicates that the 3-endo cycloadduct is favored both kinetically and thermodynamically, which is in agreement with the experimental data. Analysis of the bond order and charge transfer in the transition states shows that this reaction takes place via a synchronous-concerted mechanism.  相似文献   

4.
B3LYP/6-31G(d), B3LYP/6-311++G(d,p), and CBS-QB3 calculations on the effect of CuCl on the azido/tetrazole isomerism have been performed. The cases of 2-azidopyridine and 2-azido-1H-imidazole have been selected as examples of heteroaromatic six- and five-membered rings. All minima and transition states have been characterized.  相似文献   

5.
The kinetics and mechanisms of the gas‐phase elimination reactions of neopentyl chloride and neopentyl bromide have been studied by means of electronic structure calculations using density functional methods: B3LYP/6‐31G(d,p), B3LYP/ 6‐31++G(d,p), MPW1PW91/6‐31G(d,p), MPW1PW91/6‐31++G(d,p), PBEPBE/6‐31G(d,p), PBEPBE /6‐31++G(d,p). The reaction channels that account in products formation have a common first step involving a Wagner‐Meerwein rearrangement. The migration of the halide from the terminal carbon to the more substituted carbon is followed by beta‐elimination of HCl or HBr to give two olefins: the Sayzeff and Hoffmann products. Theoretical calculations demonstrated that these eliminations proceed through concerted asynchronous process. The transition state (TS) located for the rate‐determining step shows the halide detached and bridging between the terminal carbon and the quaternary carbon, while the methyl group is also migrating in a concerted fashion. The TS is described as an intimate ion‐pair with a large negative charge at the halide atom. The concerted migration of methyl group provides stabilization of the TS by delocalizing the electron density between the terminal carbon and the quaternary carbon. The B3LYP/6‐31++G(d,p) allows to obtain reasonable energies and enthalpies of activation. The nature of these reactions is examined in terms of geometrical parameters, electron distribution, and bond order analysis. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

6.
Ab initio methods at the levels HF/cc‐pVDZ, HF/6‐31G(d,p), MP2/cc‐pVDZ, and MP2/6‐31G(d,p), as well as methods based on density functional theory (DFT) employing the hybrid functional B3LYP with the basis sets cc‐pVDZ and 6‐31G(d,p), have been applied to study the conformers of 2,6‐distyrylpyridine. Bond distances, bond angles, and dihedral angles have been calculated at the B3LYP level. The calculated values were in good agreement with those measured by X‐ray diffraction analysis of 2,6‐distyrylpyridine. The values calculated using the Hartree‐Fock method and second‐order perturbation theory (MP2) were inconsistent. The optimized lowest‐energy geometries were calculated from the reported X‐ray structural data by the B3LYP/cc‐pVDZ method. Three conformations, A, B, and C, were proposed for 2,6‐distyrylpyridine. Calculations at the three levels of theory indicated that conformation A was the most stable structure, with conformations C and B being higher in energy by 1.10 and 2.57 kcal/mol, respectively, using the same method and basis function. The same trend in the relative energies of the three possible conformations was observed at the two levels of theory and with the different basis sets employed. The reported X‐ray data were utilized to optimize total molecular energy of conformation A at the different calculation levels. The bond lengths, bond angles, and dihedral angles were then obtained from the optimized geometries by ab initio methods and by applying DFT using the two basis functions cc‐pVDZ and 6‐31G(d,p). The values were analyzed and compared. The calculated total energies, the relative energies of the molecular orbitals, the gap between them, and the dipole moment for each conformational structure proposed for 2,6‐distyrylpyridine are also reported. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

7.
Possible cyclization pathways for the reaction of (1E,2E)-N-(but-2-en-1-ylidene)triflamide with N,N'-dimethylcarbodiimide have been investigated by DFT and MP2 calculations. The [4+2] route is shown to be thermodynamically unfavorable due to a small content of the reactive s-cis conformer of the azadiene. The [2CN+2CN] route has ΔGº>0 and therefore is thermodynamically forbidden. The only allowed route is the [2CN+2CC] cycloaddition, which has ΔGº < 0 and leads to 2-methylimino-3-(2-trifliminomethyl)-1,4-dimethylazetidine with further isomerization to 3-(triflamidomethylidene)-2-methylimino-1,4-dimethylazetidine in full agreement with the experimental results. These results indicate the necessity of considering free energy changes rather than only enthalpy changes for accurate prediction of the course of cyclization reactions.  相似文献   

8.
To appreciate the chemistry of N-heterocyclic carbenes (NHCs), eight carbenic tautomers of pyridine (azacyclohexadienylidenes) are studied at B3LYP/AUG-cc-pVTZ//B3LYP/6-31+G and B3LYP/6-311++G∗∗//B3LYP/6-31+G levels of theory. Various thermodynamic parameters are calculated for these minima, along with a kinetic focus on carbene-pyridine tautomerization. Appropriate isodesmic reactions show stabilization energies of 2-azacyclohexa-3,5-dienylidene (1) and 4-azacyclohexa-2,5-dienylidene (6) as 119.4 and 104.1 kcal/mol, rather close to that of the synthesized 1,3-dimethylimidazol-2-ylidene (129.2 kcal/mol). Three different mechanisms are suggested for the tautomerizations including: [1,2]-H shift, [1,4]-H shift, and three sequential [1,2]-H shifts. The calculated energy barrier for [1,2]-H shift of 1 is 44.6 kcal/mol, while the first [1,2]-H shift for the proposed sequential mechanism of 6 requires 65.1 kcal/mol. Three preliminary minimum templates are introduced, which may possess the potential of synthetic consideration: 2,6-di(X)-3,5-dichloro-4-azacyclohexa-2,5-dienylidene for X=Mes, t-Bu, and Ad.  相似文献   

9.
The standard (p 0 = 0.1 MPa) molar enthalpies of formation for the liquid 2,3-dimethylpyrazine and trimethylpyrazine and the crystalline 2,3-dimethylquinoxaline and tetramethylpyrazine were derived from the standard molar enthalpies of combustion, in oxygen, atT=298.15 K, measured by static-bomb combustion calorimetry. The standard molar enthalpies of vaporization or of sublimation for the same compounds were determined by Calvet microcalorimetry. Ab initio full geometry optimization at the 3-21G and 6-31G* levels were also performed for all the methylpyrazine isomers. MP2/RHF/3-21G//3-21G and DFT energies were also calculated for all the methylpyrazine isomers, thus allowing us to estimate their isodesmic resonance energies.  相似文献   

10.
The activation of the Ge-H bond and the formation of several hydride complexes, characterized by high-field resonances, have been detected during the 1H NMR spectroscopy monitoring of the photochemical reaction of Et3GeH and Et2GeH2 with W(CO)6 and the norbornadiene complex [W(CO)4(η4-nbd)]. The activation of the Ge-H bond of triethylgermane in the photochemical reactions of tungsten(0) complexes has been applied in the hydrogermylation of norbornadiene (nbd), which leads to the formation of endo-triethylgermylnorbornene as the major product. The complex [{W(μ-η2-H-GeEt2)(CO)4}2] has been fully characterized by NMR spectroscopy and by a single-crystal X-ray diffraction study. Evidence for the hydride ligand of the W(μ-η2-H-GeEt2) group has been provided by 1H NMR spectroscopy (δ = −9.02, 1JH-W = 31 Hz) and by DFT calculations. A DFT study of the structural properties and 1H NMR chemical shifts of several possible intermediate σ and hydride complexes formed during the photochemical reaction of W(CO)6 and Et2GeH2 has been performed.  相似文献   

11.
Quantum chemical calculations at the HF/6-31G* and B3LYP/6-31G* levels have been performed on five explosive sensitizers, ethyl nitrate (EN), n-propyl nitrate (NPN), isopropyl nitrate (IPN), 2-ethylhexyl nitrate (EHN) and tetraethylene glycol dinitrate (TEGDN). Theoretical study has made a detailed molecular-level investigation of the title compounds. Based on the Mulliken populations and bond lengths, the fission of the O2–N3 can be acceptable reasonably. Charge distribution analysis indicates that the five nitrates produce NO2 gas during the dissociation of the O2–N3 weak bond. We also order the relative thermal stability of five nitrates on the basis of frontier orbital energy (E HOMO, E LUMO) and energy gap (ΔE = E HOMOE LUMO).  相似文献   

12.
Experimental and theoretical aspects of the condensation of glycerol and its homologs (1,2,3- and 1,2,4-butanetriols) with formaldehyde and acetone are studied under conditions of acid catalysis. Calculation of the thermodynamic parameters of the resulting products by the composite method CBS-QB3 shows that the six-membered heterocycles, the products of the interaction of triols with formaldehyde, are thermodynamically more stable than the five-membered acetals, while the reaction of the same triols with acetone is preferable for the formation of the five-membered acetals. This is due to the fact that the regioselectivity of the studied reactions is determined by the structural features and reactivity of the carbocations formed in a condensed medium during the course of the reaction. According to the theoretical data obtained experimentally, during the condensation of glycerol and 1,2,4-butanetriol with formaldehyde in the most stable form of the six-membered cyclic carbocation, intramolecular hydrogen bonding and anomeric stabilization due to the axially oriented hydroxyl group take place. As a result, cation 1b–1 is 1.2–1.6 kJ/mol more stable than its five-membered isomers ( 1a–1 and 1b–2 ). It leads to the predominant formation of 1,3-dioxane ( 3b ). However, upon condensation of butanetriol-1,2,3 with formaldehyde, the intermediate cation 4a–1 turns out to be significantly more stable than the other isomers due to the strong intramolecular hydrogen bond in the six-membered ring with the participation of the hydroxyl group of the substituent and the hydroxyl group of the cationic center, leading to the predominant formation of the dioxolane 6a .  相似文献   

13.
The reactions of Sc(+)((3)D) with methane, ethane, and propane in the gas phase were studied theoretically by density functional theory. The potential energy surfaces corresponding to [Sc, C(n), H(2n+2)](+) (n=1-3) were examined in detail at the B3LYP/6-311++G(3df, 3pd)//B3LYP/6-311+G(d,p) level of theory. The performance of this theoretical method was calibrated with respect to the available thermochemical data. Calculations indicated that the reactions of Sc(+) with alkanes are multichannel processes which involve two general mechanisms: an addition-elimination mechanism, which is in good agreement with the general mechanism proposed from earlier experiments, and a concerted mechanism, which is presented for the first time in this work. The addition-elimination reactions are favorable at low energy, and the concerted reactions could be alternative pathways at high energy. In most cases, the energetic bottleneck in the addition-elimination mechanism is the initial C--C or C--H activation. The loss of CH(4) and/or C(2)H(6) from Sc(+)+C(n)H(2n+2) (n=2, 3) can proceed along both the initial C--C activation branch and the Cbond;H activation branch. The loss of H(2) from Sc(+)+C(n)H(2n+2) (n=2, 3) can proceed not only by 1,2-H(2) and/or 1,3-H(2) elimination, but also by 1,1-H(2) elimination. The reactivity of Sc(+) with alkanes is compared with those reported earlier for the reactions of the late first-row transition-metal ions with alkanes.  相似文献   

14.
Quantum chemical calculations based on DFT method were performed on three quinoxalines compounds namely ethyl 2-(4-(2-ethoxy-2-oxoethyl)-2-p-tolylquinoxalin-1(4H)-yl)acetate (Q1), 1-[4-acetyl-2-(4-chlorophenyl)quinoxalin-1(4H)-yl]acetone (Q2) and 2-(4-methylphenyl)-1,4-dihydroquinoxaline (Q3), used as corrosion inhibitors for copper in nitric acid media to determine the relationship between the molecular structure of quinoxalines and inhibition efficiency. Quantum chemical parameters such as the highest occupied molecular orbital energy (EHOMO), the lowest unoccupied molecular orbital energy (ELUMO), energy gap (ΔE), dipole moment (μ), electronegativity (χ), electron affinity (A), global hardness (η), softness (σ), ionization potential (I), the fraction of electrons transferred (ΔN), and the total energy (TE), were calculated. The theoretically obtained results were found to be consistent with the experimental data reported.  相似文献   

15.
Quantum chemical calculations using density functional theory (B3LYP) were carried out to elucidate the reaction pathways for ethylene addition to the chromium and molybdenum complexes CrO(CH3)2(CH2) (Cr1) and MoO(CH3)2(CH2) (Mo1). The results are compared with previously published results of the analogous tungsten system WO(CH3)2(CH2) (W1). The comparison of the group-6 elements shows that the molybdenum and tungsten compounds Mo1 and W1 have a similar reactivity while the chromium compound has a more complex reactivity pattern. The kinetically most favorable reaction pathway for ethylene addition to Mo1 is the [2+2]Mo,C addition across the MoCH2 double bond which has an activation barrier of only 8.4 kcal/mol. The reaction is slightly exothermic with ΔER = −0.6 kcal/mol. The [2+2]Mo,O addition across the MoO double bond and the [3+2]C,O addition have much higher barriers and are strongly endothermic. The thermodynamically mostly favored reaction is the [1+2]Mo addition of ethylene to the metal atom which takes place after prior rearrangement of the Mo(VI) compound Mo1 to the Mo(IV) isomer Mo1g. The reaction is −19.2 kcal/mol exothermic but it has a large barrier of 34.5 kcal/mol. The kinetically and thermodynamically most favorable reaction pathway for ethylene addition to the chromium homologue Cr1 is the multiple-step process with initial rearrangements Cr1 → Cr1c → Cr1g which are followed by a [1+2]Cr addition yielding an ethylene π complex Cr1g + C2H4 → Cr1g-1. The highest barrier comes from the first step Cr1 → Cr1c which has an activation energy of 14.2 kcal/mol. The overall reaction is exothermic by −26.3 kcal/mol.  相似文献   

16.
In order to better understand, at a sub-molecular level, the minimal structural requirements for the recognition process in the platelet aggregation inhibitory activity, a series of RGD mimetics were examined as fibrinogen receptor antagonists variants. We simulate the electronic interactions between RGD with its biological receptor in terms of smaller molecules. MeCOO was used to mimic the side chain of deprotonated Asp and Meguanidinium group mimicked the side chain of the protonated Arg. Alternative moieties present on the RGD mimetics were also studied in this report. AM1; RHF/3-21G; B3LYP/6-31++G** in the gas phase. Also, B3LYP/6-31++G** calculations using the IPCM solvation model were carried out for all the complexes. Our results indicate that high level of theory calculations and the inclusion of solvent effects are crucial in order to obtain satisfactory of accuracy in the electronic distributions of these compounds.  相似文献   

17.
The cyclooctatetraenyl dianion (C8H82−) π-conjugated system forms a stable complex system with alkali and some transition metals. The results of vibrational analysis for C8H8M2 (M = Na, K) complexes were reported here. The geometries of C8H8M2 (M = Na, K) were optimized using ab initio (HF, MP2, CCSD(T)) and DFT (B3LYP) methods with 6-311G** and 6-311++G** basis sets and the harmonic frequencies were obtained. To reproduce and compare with the experimental values the structurally similar molecules C5H5M (M = Na, K) and benzene were studied. The scale factors obtained from these systems were applied to predict the experimental frequencies of C8H8M2 (M = Na, K). The force field and vibrational spectra are analyzed and the most probable assignments are proposed for all the fundamentals based on the potential energy distribution.  相似文献   

18.
Detailed quartet and doublet potential energy surfaces for the Ti+ + C3H8 → TiC3H6+ + H2 and Ti+ + C3H8 → TiC2H4+ + CH4 elimination reactions have been studied using density functional theory with B3LYP functional and ab initio coupled cluster CCSD(T) methods. Several H2 elimination and CH4 elimination reaction paths have been examined including the IRC following. In particular, the mechanisms involving, respectively, the H2TiC3H6+ and CH3TiHC2H4+ intermediates have been studied. Contribution to the Mark S. Gordon 65th Birthday Festschrift Issue.  相似文献   

19.
Ab initio calculations have been performed to study on the molecular structures and the vibrational levels of the low-lying ionic states (2B2u,2Ag,2B2g,2B3u,2Au,2B1g,2B1u, and2B3g) of tetrafluoroethylene. The equilibrium molecular structures and vibrational modes of these states are presented. The theoretical ionization intensity curves including the vibrational structures of the low-lying eight ionic states are also presented and compared with the photoelectron spectrum. Some new assignments of the photoelectron spectra are proposed.  相似文献   

20.
A DFT study of the thermal and radical sulfenate–sulfoxide rearrangement of derivatives of 3‐propenyl sulfoxide has been carried out. The effect of the substitution and hydrogen bond complexation has been analyzed. The results show that without external factors the radical breakdown path is the one preferred by the alkyl and aromatic derivatives while the unsubstituted system proceeds preferentially through a two‐step series of [1,3]‐ and [2,3]‐sigmatropic shifts. The inclusion of a hydrogen bond donor interacting with the oxygen atom increases the stability of all the species except the radical and the final products. Thus, in the dimethyl derivative the radical and two‐step processes present similar limiting steps. The analysis of the electron density of the systems provides some relationships between the properties at the bond critical point and the interatomic distances for the S···C and H···O cases. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem 110:2391–2397, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号