首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of the two lowest-order uniaxial anisotropy fields on the phase diagrams of the classical m-vector spin glass are analyzed. The model is defined in terms of infinite–range interactions and the replica approach is used to study the system. The replica-symmetric phase diagrams present qualitative modifications with respect to those with no uniaxial anisotropies; new features, in particular, reentrance effects arise. In some cases, the reentrant critical frontiers are totally inside the region of instability of the replica-symmetric solution and may disappear within more general parametrizations, whereas in other cases, they coincide with the limit of stability of such a solution and should persist under replica-symmetry breaking.  相似文献   

2.
Ising spin glasses are studied, at zero temperature, on a hierarchical lattice as an approach to the square lattice. The stiffness exponent y, which governs the behavior of the interactions under changes of scale, is computed for several distinct continuous symmetric probability distributions for the couplings. All distributions considered lead to the same estimates, i.e., the exponent y is universal. Our results are compared with other estimates available for the two-dimensional Gaussian Ising spin glass.  相似文献   

3.
We present an analysis of the data on aging in the three-dimensional Edwards-Anderson spin-glass model with nearest-neighbor interactions, which is well suited for the comparison with a recently developed dynamical mean-field theory. We measure the parameterx(q) describing the violation of the relation among correlation and response functions implied by the fluctuation-dissipation theorem.  相似文献   

4.
Stefan Boettcher 《Physica A》2007,386(2):640-643
Based on a recently developed algorithm for the exploration of ground states in bond-diluted lattice spin glasses, we determine the scaling of defect energies with system size for Ising spin glasses at the bond percolation threshold pc. The results can be related by well-known scaling relations to the shape of the transition temperature Tg∼(p-pc)φ between the paramagnetic and glassy regime for ppc. The numerical results in three dimensions are consistent with rather old experimental data for (FexNi1-x)75P16B6A3, suggesting that new experimental work may be able to put those numerical predictions to the test.  相似文献   

5.
We review some known results on the nature of the tree of states in spin glasses and we present new results on its topology. We pay particular attention to the so-called continuum limit in which the levels are labeled by a continuous variablex. We also study the dependence on the levelx of the type of branching (bifurcation, trifurcation,...). We show that the statistics of the tree is universal in the continuum limit, i.e., it does not depend on the details of the algorithm used to generate the tree.  相似文献   

6.
An experimental protocol developed for spin glasses has been applied to a reentrant system. We compare the main features of the aging phenomena in both spin glass and ferromagnetic phases.  相似文献   

7.
The low-temperature phase of discontinuous mean-field spin glasses is generally described by a one-step replica symmetry breaking (1RSB) ansatz. The Gardner transition, i.e. a very-low-temperature phase transition to a full replica symmetry breaking (FRSB) phase, is often regarded as an inessential, and somehow exotic phenomenon. In this paper we show that the metastable states which are relevant for the out-of-equilibrium dynamics of such systems are always in a FRSB phase. The only exceptions are (to the best of our knowledge) the p-spin spherical model and the random energy model (REM). We also discuss the consequences of our results for aging dynamics and for local search algorithms in hard combinatorial problems. Received 10 February 2003 Published online 20 June 2003 RID="a" ID="a"e-mail: Federico.Ricci@roma1.infn.it RID="b" ID="b"UMR 8549, Unité Mixte de Recherche du Centre National de la Recherche Scientifique et de l' école Normale Supérieure  相似文献   

8.
The spin configurations of two dimensional ferromagnetic/antiferromagnetic system were investigated using model calculations and Monte-Carlo simulation methods. The lowest energy state was obtained under various coupling conditions to investigate the role of interfacial interaction on anisotropy. We found that the total ferromagnetic layer anisotropy is contributed not only from its own crystalline anisotropy but also from the antiferromagnetic layer spin flop effect. The overall ferromagnetic layer effective anisotropy is calculated as a function of the exchange energy of antiferromagnetic layer and the interfacial interaction energy. If the effective anisotropy from the spin flop effect is comparable with the crystalline anisotropy, the asymmetric spin configuration is generated. In this configuration, the magnetization direction of the ferromagnetic layer is neither perpendicular nor parallel to the antiferromagnetic spin direction. Temperature effect on the perpendicular-to-collinear coupling transition was also investigated using Monte-Carlo simulation, and the relationship between the effective anisotropy and the temperature was obtained.  相似文献   

9.
The single crystal of the new ternary compound Sm12Fe14Al5 was grown and its crystallographic and magnetic properties were investigated. Sm12Fe14Al5 has a hexagonal structure of the space group p-3m1 and shows ferromagnetism with a Curie temperature of 245 K. The easy direction of magnetization is parallel to the c-axis at temperatures between 245 and 85 K; however, it changes to the c-plane below 85 K through a first-order-like phase transition. No saturation is observed in the magnetization curve even under the applied field of 55 kOe at 5 K. Sm12Fe14Al5 seems to have a large coercive field at very low temperatures. The anisotropy field was estimated at 5 and 120 K and the saturation magnetization of low temperature phase is explained assuming a ferromagnetic coupling between Fe and Sm sublattices.  相似文献   

10.
The aim of this paper is to discuss the main ideas of the Talagrand proof of the Parisi Ansatz for the free-energy of Mean Field Spin Glasses with a physicist's approach. We consider the case of the spherical p-spin model, which has the following advantages: (1) the Parisi Ansatz takes the simple “one step replica symmetry breaking form,” (2) the replica free-energy as a function of the order parameters is simple enough to allow for numerical maximization with arbitrary precision. We present the essential ideas of the proof, we stress its connections with the theory of effective potentials for glassy systems, and we reduce the technically more difficult part of the Talagrand's analysis to an explicit evaluation of the solution of a variational problem.  相似文献   

11.
Simple phenomenological model of ferromagnetic film characterized by equal energies of surface anisotropies at two sides of a film (symmetric film) is considered. The model is used to describe a two-step spin reorientation transition (SRT) in Au/Co/Au sandwich with Co film thickness: the SRT from perpendicular to canted noncollinear (CNC) state at N=6.3 atomic layers and the subsequent SRT from CNC to in-plane state at N=10.05N=10.05 atomic layers. Analytic expressions for the stability criterion of collinear perpendicular and in-plane states of a film are derived with account of discrete location of atomic layers. The dependence of borders that separate regions corresponding to various magnetic states of a film in the (kB,kS)-diagram on film thickness N is established. kS(kB) is surface (bulk) reduced anisotropy constant. The comparison of theory with experiment related to Au/Co/Au sandwich shows that there is a whole region in the (kB,kS)-diagram corresponding to experimentally determined values of threshold film thicknesses N=6.3 and N=10.05N=10.05. The comparison of this region with similar region determined earlier for a bare Co/Au film within the same model of asymmetric film and characterized by N=3.5, N=5.5N=5.5 shows that the intersection of these regions is not empty. Hence, both the SRT in Au/Co/Au sandwich and in bare Co/Au film with Co film thickness can be described within the same model using the same magnitudes of model parameters kS, kB. Based on this result we conclude that the energy of Neel surface anisotropy at free Co surface is negligible compared to the energy of Co–Au interface anisotropy. It is demonstrated that the destabilization of collinear states in symmetric film leads to occurrence of the ground CNC state and two novel metastable CNC states. These three CNC states exhibit different kinds of symmetry. In case of asymmetric film only ground CNC state occurs on destabilization of collinear states of a film.  相似文献   

12.
We have studied the development of metastable properties associated with a nearly spin-degenerate two-dimensional electron system. Application of large hydrostatic pressure significantly reduces the g-factor experienced by electrons in GaAs/AlGaAs heterostructure, and various fractional quantum Hall effect (FQHE) states are found to undergo transition to a spin-unpolarized ground state. In case of even numerator FQHE states, the spin transitions are accompanied by hysteresis and nonlinearity in the magnetotransport. These results strongly support a recent theory of quantum Hall magnetism in which competition between spin-polarized and spin-unpolarized ground states leads to an ordered phase that exhibits ferromagnetic correlation.  相似文献   

13.
The magnetothermal properties of pseudo binary Ho1−xErxAl2 alloys have been investigated by heat capacity measurements. Two anomalies are observed in the heat capacity of HoAl2. A sharp peak at 20 K represents the first order spin reorientation transition, and a second order anomaly occurs in the vicinity of the ferromagnetic transition at 32 K. As Ho is partially replaced by Er in Ho1−xErxAl2 the sharpness of the first order heat capacity peak diminishes with increasing Er concentration, while the temperature of this transition remains practically unaffected. The second order ferromagnetic transition shifts to higher temperature region with increasing Er concentration. The observed behaviors are explained considering the geometry of 4f charge densities of Ho3+ and Er3+ and the easy magnetization directions of HoAl2 and ErAl2.  相似文献   

14.
Replica field theory is used to study the n  -dependent free energy of the Ising spin glass in a first order perturbative treatment. Large sample-to-sample deviations of the free energy from its quenched average prove to be Gaussian, independently of the special structure of the order parameter. The free energy difference between the replica symmetric and (infinite level) replica symmetry broken phases is studied in details: the line n(T)n(T) where it is zero coincides with the Almeida–Thouless line for d>8d>8. The dimensional domain 6<d<86<d<8 is more complicated, and several scenarios are possible.  相似文献   

15.
Electrical resistivityρ(T) of spin glasses within the framework of Mookerjee and Chowdhury’s percolation model where there is a distribution of relaxation times (drt) is calculated.ρ(T) thus calculated is in better qualitative agreement with experimental results than that in the single relaxation time model.  相似文献   

16.
The magnetic properties of the intermetallic compound Dy2CuIn3 have been investigated. Ac and dc-susceptibility measurements indicate an onset of antiferromagnetic ordering at TN=19.5 K and an additional frequency dependent transition at Tds∼9 K. Neutron diffraction studies confirm the ordered transition at 19.5±1 K. The magnetic unit cell can be described by the propagation vector k=(0.25,0.25,0) with the magnetic moment μ=2.63(4)μB/Dy3+ parallel to the c-axis. Nevertheless, neutron diffraction reveals no additional magnetic phase transition around or below 9 K, which suggests that, at lower temperatures, a spin glass state may be formed in coexistence with the antiferromagnetic mode as a result of frustration and the antagonism between ferromagnetic and antiferromagnetic exchange interactions.  相似文献   

17.
Strained epitaxial La0.5Sr0.5CoO3 films are grown on LaAlO3 substrate. Structural, electrical, and magnetic measurements were carried out. Out of plane lattice parameter of the film undergoes compressive strain and the coercivity is enhanced. The zero field cooled (ZFC) magnetization curve for a field applied parallel to the film plane shows a jump, which suggests a spin reorientation transition (SRT), while ZFC magnetization for a field applied perpendicular to the film plane is featureless. This jump in magnetization is shifted to higher temperatures when the magnetic field is reduced. The SRT is attributed to the strain in the film.  相似文献   

18.
We examine the phase diagram of the p-interaction spin glass model in a transverse field. We consider a spherical version of the model and compare with results obtained in the Ising case. The analysis of the spherical model, with and without quantization, reveals a phase diagram very similar to that obtained in the Ising case. In particular, using the static approximation, reentrance is observed at low temperatures in both the quantum spherical and Ising models. This is an artifact of the approximation and disappears when the imaginary time dependence of the order parameter is taken into account. The resulting phase diagram is checked by accurate numerical investigation of the phase boundaries.  相似文献   

19.
We report resistivity and magnetization measurements on an amorphous Ni74Mn24Pt2 thin film in the temperature range of 3–300 K. Two significant features are apparent in both the magnetic susceptibility and electrical resistivity. A low-temperature (low-T) anomaly is observed at about 40 K, where a cusp appears in the resistivity, while a concomitant step-like increase in zero-field-cooled (ZFC) magnetization (M) appears with increasing temperature. The low-T anomaly is attributed to a crossover from a pure re-entrant spin-glass within individual domains to a mixed ferro-spin-glass regime at lower temperatures. By contrast, the high-temperature (high-T) anomaly, signaled by the appearance of hysteresis below 250 K, corresponds to the freezing of transverse spins in individual domains acting independently. Between the low-T and high-T anomalies a small but discernable magnetic hysteresis is observed for warming vs. cooling in the field-cooled (FC) case. This behavior clearly indicates the presence of domain structure in the sample, while the disappearance of this hysteresis at lower temperatures indicates the complete freezing of the spin orientation of these domains. According to these results, we have divided the magnetic state of this sample into three regions: at temperatures above 250 K, the sample behaves like a soft ferromagnet, exhibiting M vs. H loops with very small hysteresis (less than 5 Oe). As the temperature is lowered into the intermediate region (the range 40–250 K), spins become frozen randomly and progressively within the individual domains. These domains behave independently, rather than as a cooperative behavior of the sample. Weak irreversibility sets in, indicating the onset of transverse spin freezing within the domains. At temperatures below 40 K, the M vs. H loops exhibit larger hysteresis, for both the ZFC and FC cases, as in a pure spin-glass. We have also demonstrated giant noise in the resistivity at temperatures just below 250 K. Such noise can originate from fluctuations of the domains near the film surface because of competing effective bulk and surface anisotropy fields. The large observed amplitude may be explained by means of a large ferromagnetic anisotropy in the resistivity due to the large spin–orbit effect seen in NiMn systems. Finally, the low-T peak in the resistivity has been analyzed using Fisher and Langer's expression based on the Friedel Model proposed for critical transitions in transition metals (sd systems). The fitted results are in satisfactory agreement with the predictions of this model.  相似文献   

20.
Heavy ion irradiation in the electronic stopping power region induces macroscopic dimensional change in metallic glasses and introduces magnetic anisotropy in some magnetic materials. The present work is on the irradiation study of ferromagnetic metallic glasses, where both dimensional change and modification of magnetic anisotropy are expected. Magnetic anisotropy was measured using Mössbauer spectroscopy of virgin and irradiated Fe40Ni40B20 and Fe40Ni38Mo4B18 metallic glass ribbons. 90 MeV 127I beam was used for the irradiations. Irradiation doses were 5×1013 and 7.5×1013 ions/cm2. The relative intensity ratios D 23 of the second and third lines of the Mössbauer spectra were measured to determine the magnetic anisotropy. The virgin samples of both the materials display in-plane magnetic anisotropy, i.e., the spins are oriented parallel to the ribbon plane. Irradiation is found to cause reduction in magnetic anisotropy. Near-complete randomization of magnetic moments is observed at high irradiation doses. Correlation is found between the residual stresses introduced by ion irradiation and the change in magnetic anisotropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号