首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an effort to improve the stability of our tissue-mimetic vesicle aggregates, we have investigated how increasing the valency of our multivalent crosslinking ligand, poly-l-histidine, affected both the extent of vesicle aggregation and the affinity of the multivalent ligand for the synthetic receptor Cu(1) embedded in the vesicle membranes. Although increasing ligand valency gave the anticipated increase in the size of the vesicle aggregates, isothermal calorimetric studies did not show the expected increase in the valence-corrected binding constant for the embedded receptors. To explain both observations, we have developed a simple new binding model that encompasses both multivalent binding to receptors on a single vesicle surface (intramembrane binding) and vesicle crosslinking (intermembrane binding).  相似文献   

2.
G-protein-coupled receptors (GPCRs) are ubiquitous mediators of signal transduction across cell membranes and constitute a very important class of therapeutic targets. In order to study the complex biochemical signaling network coupling to the intracellular side of GPCRs, it is necessary to engineer and control the downstream signaling components, which is difficult to realize in living cells. We have developed a bioanalytical platform enabling the study of GPCRs in their native membrane transferred inside-out from live cells to lectin-coated beads, with both membrane sides of the receptor being accessible for molecular interactions. Using heterologously expressed adenosine A(2A) receptor carrying a yellow fluorescent protein, we showed that the tethered membranes comprised fully functional receptors in terms of ligand and G protein binding. The interactions between the different signaling partners during the formation and subsequent dissociation of the ternary signaling complex on single beads could be observed in real time using multicolor fluorescence microscopy. This approach of tethering inside-out native membranes accessible from both sides is straightforward and readily applied to other transmembrane proteins. It represents a generic platform suitable for ensemble as well as single-molecule measurements to investigate signaling processes at plasma membranes.  相似文献   

3.
Problems in membrane biology require methods to recreate the interactions between receptors and cytoplasmic signaling proteins at the membrane surface. Here, unilamellar vesicles composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine and a nickel-chelating lipid were used as templates to direct the assembly of proteins from the Escherichia coli chemotaxis signaling pathway. The bacterial chemoreceptors are known to form clusters, which promote the binding of the adaptor protein (CheW) and the kinase (CheA). When CheA was incubated with vesicles, CheW, and a histidine-tagged cytoplasmic domain fragment of the aspartate chemoreceptor (CF), the kinase activity was stimulated approximately 300-fold. Activity and pull-down assays were used with dynamic light scattering and electron microscopy to characterize the protein-vesicle compositions that were correlated with the high levels of activity, which demonstrated that CF-CheW-CheA complexes on the vesicle surface were the active entities. Assembly and stimulation occurred with vesicles of different sizes and CFs in different extents of glutamine substitution (in place of glutamate) at physiologically relevant sites. An exception was the combination of sonicated vesicles with the unsubstituted CF, which displayed lower CheA activity. The lower activity was attributed to the high curvature of the sonicated vesicles and a weaker tendency of the unsubstituted CF to self-assemble. Electron micrographs of the vesicle-protein assemblies revealed that protein binding induced pronounced changes in vesicle shape, which was consistent with the introduction of positive curvature in the outer leaflet of the bilayer. Overall, vesicle-mediated template-directed assembly is shown to be an effective way to form functional complexes of membrane-associated proteins and suggests that significant changes in membrane shape can be involved in the process of transmembrane signaling.  相似文献   

4.
A problem of cell-to-cell communication by diffusible ligands is analyzed for the case when cells are distributed in three dimensions and diffusible ligands are secreted by cells and reversibly bind to cell surface receptors. Following its binding to a receptor, the ligand can either dissociate and be released back in the medium or be absorbed by the cell in a process that is called internalization. Using an effective medium approximation, we derive analytical expressions that characterize the time and length scales associated with the ligand trajectories leading to internalization. We discuss the applicability of our approximation and illustrate the application of our results to a specific cellular system.  相似文献   

5.
Screening populations of individual cells for secretory heterogeneity   总被引:1,自引:0,他引:1  
Many common metabolic and neurological disorders are related to defective regulation of exocytosis at the level of single cells. In exocytosis, vesicles containing the secretory product of a given cell type fuse with the plasma membrane allowing release of the vesicular contents into the extracellular environment where the physiological action can be exerted. The typical secretory vesicle contains between 0.15 and 10 attomoles of material that is released on a millisecond timescale. Hence, detection of this process presents several chemical and analytical challenges. In this work, we utilize the native ATP, stored at high concentrations within the secretory vesicles of most neuroendocrine cells and co-released during exocytosis and during cell lysis, as a universal tracer of cellular secretion events. Organisms studied include pancreatic islets, mast cells, and Escherischia coli. Cellular processes investigated include exocytotic release, stimulated cell lysis, and programmed cell lysis.  相似文献   

6.
The theory of ligand binding to receptors on a cell surface suggested by Berg and Purcell and generalized by Zwanzig and Szabo uses the assumption that receptors are circular absorbing disks on an otherwise reflecting sphere. One of the key ingredients of this theory is a solution for the rate constant for ligand binding to a single circular receptor on a reflecting plane. We give an exact solution for the rate constant for binding to a single elliptic receptor and an approximate solution for binding to a single receptor of more general shape. The latter was tested by Brownian dynamics simulations. We found that the approximate formula predicted the rate constant with better than 10% accuracy for all studied receptor shapes. Using our solutions one can find the rate constant for ligand binding to a cell covered by N noncircular receptors by means of the Zwanzig-Szabo formula.  相似文献   

7.
The development of model systems that mimic biological interactions and allow the control of both receptor and ligand densities, is essential for a better understanding of biomolecular processes, such as the recruitment of receptors at interfaces, at the molecular level. Here we report a model system based on supported lipid bilayers (SLBs) for the investigation of the clustering of receptors at their interface. Biotinylated SLBs, used as cell membrane mimics, were functionalized with streptavidin (SAv), used here as receptor. Subsequently, biotinylated small (SUVs) and giant (GUVs) unilamellar vesicles were bound to the SAv-functionalized SLBs by multivalent interactions and found to induce the recruitment of both SAv on the SLB surface and the biotin moieties in the vesicles. The recruitment of receptors was investigated with quartz crystal microbalance with dissipation monitoring (QCM-D), which allowed the identification of the biotin and SAv densities necessary to obtain receptor recruitment. At approx. 0.6% of biotin in the vesicles, a transition between dense and low vesicle packing was observed, which coincided with the transitions between recruitment in the vesicles vs. recruitment in the SLB and between full and partial use of the biotin moieties in the vesicle. Direct optical visualization of the clustering at the interface of individual GUVs with the SLB platform was achieved with fluorescence microscopy, showing recruitment of SAv at the contact area as well as the deformation of the vesicles upon binding. Different vesicle binding regimes were observed for lower and higher biotin densities in the vesicles and at the SLBs. A more quantitative analysis of the molecular parameters implied in the interaction, indicated that approx. 10% of the vesicle area constitutes the contact area. Moreover, the SUV binding and recruitment appeared to be fast on the analysis time scale, whereas the binding of GUVs is slower due to the larger SLB area over which SAv recruitment needs to occur. The mechanisms revealed in this study may provide insight in biological processes in which recruitment occurs.

The development of model systems that mimic biological interactions and allow the control of both receptor and ligand densities, is essential for a molecular understanding of biomolecular processes, such as the recruitment of receptors at interfaces.  相似文献   

8.
G protein-coupled receptors (GPCRs) are versatile signaling proteins that mediate complex cellular responses to hormones and neurotransmitters. Ligand directed signaling is observed when agonists, upon binding to the same receptor, trigger significantly different configuration of intracellular events. The current work reviews the structurally defined ligand – receptor interactions that can be related to specific molecular mechanisms of ligand directed signaling across different receptors belonging to class A of GPCRs. Recent advances in GPCR structural biology allow for mapping receptors’ binding sites with residues particularly important in recognition of ligands’ structural features that are responsible for biased signaling. Various studies show particular role of specific residues lining the extended ligand binding domains, biased agonists may alternatively affect their interhelical interactions and flexibility what can be translated into intracellular loop rearrangements. Studies on opioid and angiotensin receptors indicate importance of residues located deeper within the binding cavity and direct interactions with receptor residues linking the ortosteric ligand binding site with the intracellular transducer binding domain. Collection of results across different receptors may suggest elements of common molecular mechanisms which are responsible for passing alternative signals from biased agonists.  相似文献   

9.
The building and engineering of an artificial molecular signaling system in encapsulated vesicles is a key step towards artificial cells. Recently, Tan et al. reached a new milestone by integrating an intelligent DNA nano- gatekeeper with an artificial vesicle system. The DNA nanogatekeeper driven by adenosine triphosphate(ATP) is able to receive outside stimulus, which in turn switches the diffusion of environmental ions into the integrated vesicle. Most importantly, this system enables triggering downstream signaling cascaded reactions confined in the artificial vesicle, as well as returning feedback to the DNA nanogatekeeper, mimicking real cellular behaviors of reception, transduction and response. This work has been published online in Nature Communications aon February 20, 2020.  相似文献   

10.
Advances in electrochemical methodology over the past 30?years have allowed chemical measurements to be made with decreasing amounts of analyte and at smaller spatial dimensions. This has allowed the investigation of single cells and single vesicles in cells either during release of chemical transmitter or separately. The cellular event called exocytosis can be measured with amperometry or cyclic voltammetry as discovered by Wightman and first published in 1990. In addition, the measurement of vesicle contents with electrochemistry is a new approach we have termed electrochemical cytometry. This involves isolation of intact vesicles, separation of the vesicles, and then lysing followed by coulometric analysis of the electroactive vesicle content. In this review, we will highlight work done by us and by others to discuss measurements of exocytosis at single cells and measurements at artificial cell models for studying the biophysical properties of vesicle membrane dynamics and lipid nanotubes connecting artificial cells using electrochemical methods.  相似文献   

11.
Targeted cellular delivery of drugs to specific tissues is an important goal in biomedical chemistry. Achieving this requires harnessing and applying molecular-level recognition events prevalent in (or specific to) the desired tissue type. Tissues rich in estrogen receptors (ERs), which include many types of breast cancer, accumulate molecules that have high binding affinities for these receptors. Therefore, molecules that (i) bind to the ER, (ii) have favorable cellular transport properties, and (iii) contain a second functionality (such as a center that may be used for diagnostic imaging or medical therapy) are exciting synthetic targets in the field of drug delivery. To this end, we have prepared a range of metallo-estrogens based on 17alpha-ethynylestradiol and examined their binding to the ER both as isolated receptor and in whole cell assays (ER positive MCF-7 cells). Estrogens functionalized with metal binding units are prepared by palladium-catalyzed cross-coupling reactions and a wide range of metal centers introduced readily. All the compounds prepared and tested exhibit effective binding to the estrogen receptor and are delivered across the cell membrane into MCF-7 cells. In the whole cell assays, despite their monocationic nature, the palladium and platinum complexes prepared exhibit similar (and even enhanced) receptor binding affinities compared to their corresponding neutral free ligands. It is unprecedented for a higher ER binding affinity to be observed for a cationic complex than for its metal-free ligand.  相似文献   

12.
Integrins are important membrane receptors that form focal adhesions with the extracellular matrix and are transmembrane signaling proteins. We demonstrate that nanoparticles functionalized with c‐RGDfC ligands bind to intact cell membranes and selectively enhance the amino acid signals of the integrin receptor when coupled with tip‐enhanced Raman scattering (TERS) detection. Controlling the plasmonic interaction between the functionalized nanoparticle and the TERS tip provides a clear Raman signal from αVβ3 integrins in the cell membrane that matches the signal of the purified integrin receptor. Random aggregation of nanoparticles on the cell does not provide the same spectral information. Chemical characterization of membrane receptors in intact cellular membranes is important for understanding membrane signaling and drug targeting. These results provide a new method to investigate the chemical interactions associated with ligand binding to membrane receptors in cells.  相似文献   

13.
In nature, regulation of the spatiotemporal distribution of interfacial receptors and ligands leads to optimum binding kinetics and thermodynamics of receptor–ligand binding reactions within interfaces. Inspired by this, we report a hie rarchical fluid interface (HieFluidFace) to regulate the spatiotemporal distribution of interfacial ligands to increase the rate and thermodynamic favorability of interfacial binding reactions. Each aptamer-functionalized gold nanoparticle, termed spherical aptamer (SAPT), is anchored on a supported lipid bilayer without fluidity, like an “island”, and is surrounded by many fluorescent aptamers (FAPTs) with free fluidity, like “rafts”. Such ligand “island-rafts” model provides a large reactive cross-section for rapid binding to cellular receptors. The synergistic multivalency of SAPTs and FAPTs improves interfacial affinity for tight capture. Moreover, FAPTs accumulate at binding sites to bind to cellular receptors with clustered fluorescence to “lighten” cells for direct identification. Thus, HieFluidFace in a microfluidic chip achieves high-performance capture and identification of circulating tumor cells from clinical samples, providing a new paradigm to optimize the kinetics and thermodynamics of interfacial binding reactions.  相似文献   

14.
T lymphocytes (T cells) are the central cell type initiating all immune responses. They are able to recognize other cells in the body that have been invaded by foreign living or nonliving matter. In such cells, foreign peptides generated by intracellular breakdown are complexed with molecules of the major histocompatibility complex (MHC) specially designed for peptide binding. Peptide-loaded MHC molecules appear on the surface of these cells and alert the immune system. The molecular complex which T cells use for recognition of peptide-loaded MHC molecules is among the most sophisticated and versatile receptor systems in biology. It consists of specific and nonspecific transmembrane components which assemble to a functional signal transduction unit as the result of ligand binding. Correct assembly leads to activation and relocation of enzymes including membrane-associated, tyrosin-specific protein kinases and phosphatases. Transmembrane signaling in T cells depends on the correct assembly and cooperation among multiple molecular components. This may be related to a multitude of different cellular responses of T cells at different stages of differentiation, all elicited through the T cell receptor complex.  相似文献   

15.
Lanthanide-doped nanoparticles (LnNPs) have become an important class of fluorophores for advanced biosensing and bioimaging. LnNPs that are photosensitized by surface-attached antenna ligands can possess exceptional brightness. However, their functional bioconjugation remains an important challenge for their translation into bioanalytical applications. To solve this problem, we designed a ligand that can be simultaneously applied as efficient light harvesting antenna for Tb surface ions and strong linker of biomolecules to the LnNPs surfaces. To demonstrate generic applicability of the photosensitized TbNP-bioconjugates, we applied them in two prototypical applications for biosensing and bioimaging. First, in-solution biorecognition was shown by time-resolved Förster resonance energy transfer (FRET) between streptavidin-functionalized TbNPs to biotinylated dyes (ATTO 610). Second, in situ detection of ligand–receptor binding on cells was accomplished with TbNP-antibody (Matuzumab) conjugates that could specifically bind to transmembrane epidermal growth factor receptors (EGFR). High specificity and sensitivity were demonstrated by time-gated imaging of EGFR on both strongly (A431) and weakly (HeLa and Cos7) EGFR-expressing cell lines, whereas non-expressing cell lines (NIH3T3) and EGFR-passivated A431 cells did not show any signals. Despite the relatively large size of TbNP-antibody conjugates, they could be internalized by A431 cells upon binding to extracellular EGFR, which showed their potential as bright and stable luminescence markers for intracellular signaling.  相似文献   

16.
This article presents experimental evidence and computed molecular models of a potential interaction between receptor domain D5 of TrkB with the carboxyl-terminal domain of tetanus neurotoxin (Hc-TeNT). Computational simulations of a novel small cyclic oligopeptide are designed, synthesized, and tested for possible tetanus neurotoxin-D5 interaction. A hot spot of this protein-protein interaction is identified in analogy to the hitherto known crystal structures of the complex between neurotrophin and D5. Hc-TeNT activates the neurotrophin receptors, as well as its downstream signaling pathways, inducing neuroprotection in different stress cellular models. Based on these premises, we propose the Trk receptor family as potential proteic affinity receptors for TeNT. In vitro, Hc-TeNT binds to a synthetic TrkB-derived peptide and acts similar to an agonist ligand for TrkB, resulting in phosphorylation of the receptor. These properties are weakened by the mutagenesis of three residues of the predicted interaction region in Hc-TeNT. It also competes with Brain-derived neurotrophic factor, a native binder to human TrkB, for the binding to neural membranes, and for uptake in TrkB-positive vesicles. In addition, both molecules are located together in vivo at neuromuscular junctions and in motor neurons.  相似文献   

17.
The adhesion of cells is mediated by the binding of several cell-surface receptors to ligands found in the extracellular matrix. These receptors often have overlapping specificities for the peptide ligands, making it difficult to understand the roles for discrete receptors in cell adhesion, migration, and differentiation as well as to direct the selective adhesion of cell types in tissue-engineering applications. To overcome these limitations, we developed a strategy to rewire the receptor-ligand interactions between a cell and substrate to ensure that adhesion is mediated by a single receptor with unique specificity. The strategy combines a genetic approach to engineer the cell surface with a chimeric integrin receptor having a unique ligand binding domain with a surface chemistry approach to prepare substrates that present ligands that are bound by the new binding domain. We show that Chinese hamster ovary cells that are engineered with a chimeric beta1 integrin adhere, signal, and even migrate on a synthetic matrix.  相似文献   

18.
Cell-specific aptamers offer a powerful tool to study membrane receptors at the single-molecule level. Most target receptors of aptamers are highly expressed on the cell surface, but difficult to analyze in situ because of dense distribution and fast velocity. Therefore, we herein propose a random sampling-based analysis strategy termed ligand dilution analysis (LDA) for easily implemented aptamer-based receptor study. Receptor density on the cell surface can be calculated based on a regression model. By using a synergistic ligand dilution design, colocalization and differentiation of aptamer and monoclonal antibody (mAb) binding on a single receptor can be realized. Once this is accomplished, precise binding site and detailed aptamer-receptor binding mode can be further determined using molecular docking and molecular dynamics simulation. The ligand dilution strategy also sets the stage for an aptamer-based dynamics analysis of two- and three-dimensional motion and fluctuation of highly expressed receptors on the live cell membrane.  相似文献   

19.
Intrinsically disordered proteins (IDPs) are involved in diverse cellular functions. Many IDPs can interact with multiple binding partners, resulting in their folding into alternative ligand‐specific functional structures. For such multi‐structural IDPs, a key question is whether these multiple structures are fully encoded in the protein sequence, as is the case in many globular proteins. To answer this question, here we employed a combination of single‐molecule and ensemble techniques to compare ligand‐induced and osmolyte‐forced folding of α‐synuclein. Our results reveal context‐dependent modulation of the protein′s folding landscape, suggesting that the codes for the protein′s native folds are partially encoded in its primary sequence, and are completed only upon interaction with binding partners. Our findings suggest a critical role for cellular interactions in expanding the repertoire of folds and functions available to disordered proteins.  相似文献   

20.
We report a novel vesicle formed by an amphiphilic CB[6] derivative, the surface of which can be easily modified via host-guest interactions by taking advantage of molecular cavities, readily accessible at the vesicle surface, and their strong affinity toward polyamines. Amphiphilic CB[6] derivative 1 synthesized by reaction between (allyloxy)12CB[6] and 2-[2-(2-methoxyethoxy)ethoxy]ethanethiol affords a vesicle that has been characterized by TEM, light scattering, and fluorescent dye entrapment experiments. Treatment of vesicle 1 with FITC (fluorescein isothiocyanate)-spermine conjugate ligand 2, in which spermine serves as a binding motif to CB[6] and FITC as a fluorescent tag, produced a surface-modified vesicle, which can be easily visualized by a confocal microscope. This result provides us with a new noncovalent, modular approach to the modification of vesicle surfaces. By treating the vesicle derived from the amphiphilic CB[6] with a tag-attached polyamine, we can easily decorate the surface of the vesicle with the tag. Sugar-decorated vesicles were prepared by this noncovalent method, and their interactions with concanavalin A (ConA) were studied. The binding constant of the vesicle decorated with mannose-spermidine conjugate 3 to ConA was measured to be approximately 3 x 104 M-1, which is almost 3 orders of magnitude higher than that of free ligand 3 to ConA (K = approximately 50 M-1). On the other hand, the binding constant of the vesicle coated with galactose-spermidine conjugate 4 to ConA was too small to be measured. These results illustrate the specific and multivalent interactions between the mannose-decorated vesicle and ConA. The ability for facile surface modification suggests many practical applications, including its use in targeted drug delivery and immunization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号