首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Much attention has recently been devoted to the life and behaviour of pharmaceuticals in the water cycle. In this study the behaviour of several pharmaceutical products in different therapeutic categories (analgesics and anti-inflammatory drugs, lipid regulators, antibiotics, etc.) was monitored during treatment of wastewater in a laboratory-scale membrane bioreactor (MBR). The results were compared with removal in a conventional activated-sludge (CAS) process in a wastewater-treatment facility. The performance of an MBR was monitored for approximately two months to investigate the long-term operational stability of the system and possible effects of solids retention time on the efficiency of removal of target compounds. Pharmaceuticals were, in general, removed to a greater extent by the MBR integrated system than during the CAS process. For most of the compounds investigated the performance of MBR treatment was better (removal rates >80%) and effluent concentrations of, e.g., diclofenac, ketoprofen, ranitidine, gemfibrozil, bezafibrate, pravastatin, and ofloxacin were steadier than for the conventional system. Occasionally removal efficiency was very similar, and high, for both treatments (e.g. for ibuprofen, naproxen, acetaminophen, paroxetine, and hydrochlorothiazide). The antiepileptic drug carbamazepine was the most persistent pharmaceutical and it passed through both the MBR and CAS systems untransformed. Because there was no washout of biomass from the reactor, high-quality effluent in terms of chemical oxygen demand (COD), ammonium content (N-NH4), total suspended solids (TSS), and total organic carbon (TOC) was obtained.  相似文献   

2.
Multi-residue analytical methodologies are becoming the preferred and required tools against single group analysis, as they provide wider knowledge about the occurrence of pharmaceuticals in the environment necessary for further study of their removal, partition and ultimate fate. However, simultaneous analysis of compounds from different groups with quite different physico-chemical characteristics requires a compromise in the selection of experimental conditions, which in some cases are not the best conditions for all the analytes studied. In this article, an overview of analytical methodologies focusing on the simultaneous determination of acidic, neutral and basic compounds belonging to different therapeutical classes is presented. The state-of-the-art of LC-MS/MS for multi-class analysis is reviewed, highlighting the specific requirements for such analysis.  相似文献   

3.
Occurrence patterns of pharmaceuticals in water and wastewater environments   总被引:3,自引:0,他引:3  
The occurrence of pharmaceuticals and their metabolites and transformation products in the environment is becoming a matter of concern, because these compounds, which may have adverse effects on living organisms, are extensively and increasingly used in human and veterinary medicine and are released continuously into the environment. A variety of pharmaceuticals have been detected in many environmental samples worldwide. Their occurrence has been reported in sewage-treatment-plant effluents, surface water, seawater, groundwater, soil, sediment and fish. This paper provides an overview of recent scientific research on the sources, occurrence, and fate of pharmaceuticals in water and wastewater.  相似文献   

4.
《Comptes Rendus Chimie》2016,19(8):963-970
In the last few decades, the presence of pharmaceutical products in the environment is known under the name of emerging contaminants. These substances can enter the aquatic environment via different sources, as parent compounds, metabolites or a combination of both. In this work, we have investigated the presence of four pharmaceutical active compounds belonging to the group of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs), in wastewater, surface water and drinking water of Algiers, which have a direct impact on the Mediterranean Sea. The target analytes (ibuprofen (IBU), naproxen (NAP), ketoprofen (KET), and diclofenac (DIC)), were extracted from the water samples by using Solid Phase Extraction Oasis® HLB Cartridges; the identification and quantification were realized by Gas Chromatography–Mass Spectrometry (GC–MS). To obtain the best resolution and precision, N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA) was used as the derivatization reagent and ibuprofen-d3 was used as the internal standard. The obtained recoveries were good, ranging from 82% for ketoprofen to 120% for naproxen with relatively small standard deviations (≤20%). The target compounds were detected in wastewater, influent/effluent with concentrations ranging from 155.5 to 6554 ng/L, implicating removal efficiencies of wastewater treatment plants (WWTPs), between 30.3 and 95%. The surface water was also contaminated with pharmaceuticals from 72.9 ng/L for diclofenac to 228.3 ng/L for naproxen. In addition, the occurrence of ibuprofen and ketoprofen in drinking water, at concentrations of 142.1 and 110.9 ng/L, respectively, attracts concerns about possible impacts on human health.  相似文献   

5.
This work focuses on the application of SPE-HPLC analysis of important veterinary pharmaceuticals from different classes in highly complex wastewater matrix. The pharmaceutical investigated included three sulfonamides (sulfamethazine, sulfadiazine and sulfaguanidine), a sulfonamide synergist (trimethoprim), a tetracycline (oxytetracycline), a fluoroquinolone (enrofloxacine) and a β-lactame (penicillin G/procaine). The method involves pre-concentration and clean-up by solid phase extraction (SPE) using Oasis HLB extraction catridges. Final analysis of the selected pharmaceutical compounds was carried out by high-performance liquid chromatography (HPLC) coupled with diode array detector (DAD). Recoveries were ranged from 68.3 to 97.9% with relative standard deviation below 8.4%. Only for sulfaguanidine low recovery was obtained. Limits of quantification were in the range 1.5-100 μg/L depending on pharmaceutical. The described method was applied to the determination of pharmaceuticals in wastewater samples from pharmaceutical industry.  相似文献   

6.
The presence of pharmaceuticals and other wastewater-derived micropollutants in surface and groundwaters is receiving intense public and scientific attention. Yet simple GC/MS methods that would enable measurement of a wide range of such compounds are scarce. This paper describes a GC/MS method for the simultaneous determination of 13 pharmaceuticals (acetaminophen, albuterol, allopurinol, amitriptyline, brompheniramine, carbamazepine, carisoprodol, ciclopirox, diazepam, fenofibrate, metoprolol, primidone, and terbinafine) and 5 wastewater-derived contaminants (caffeine, diethyltoluamide, n-butylbenzene sulfonamide, n-nonylphenol, and n-octylphenol) by solid phase extraction (SPE) and derivatization with BSTFA. The method was applied to the analysis of raw and treated sewage samples obtained from a wastewater treatment plant located in the mid-Atlantic United States. All analytes were detected in untreated sewage, and 14 of the 18 analytes were detected in treated sewage.  相似文献   

7.
A large number of xenobiotics including pharmaceuticals and personal care products are continuously released into the environment. Effluents from sewage treatment plants are well known to be the major source for introduction of pharmaceuticals and personal care products into the aquatic system. In recent years, reliable methods have been established for residue analysis of these pollutants down to low ng/L levels. In this review, the different approaches to their trace determination are reviewed with special attention being paid to sample preparation procedures, state-of-the-art high-performance separation methods hyphenated with mass spectrometry, and immunochemical methods.  相似文献   

8.
The applicability of hollow fibre liquid-phase microextraction (LPME), as an alternative to solid-phase extraction (SPE), for the extraction/enrichment of acidic drugs (e.g. ibuprofen, clofibric acid, bezafibrate, etc.) from water samples prior to the determination by LC-ESI-MS-MS has been evaluated. After LPME method optimisation, it was found that this technique can provide very clean extracts, which do not lead to signal suppression during LC-ESI-MS-MS analysis of the analytes. The limits of quantification (0.5-42 ng/L) are suitable for the analysis of these drugs in wastewater. However repeatability needs to been improved (intra-day R.S.D. = 3.4-32%), which may be expected by automation and the development of commercially available devices and fibres specially prepared for analytical purposes. The method was finally applied to wastewater samples (treated and untreated) and results comparable to SPE were obtained.  相似文献   

9.
A study of irradiation in the treatment of wastewater   总被引:5,自引:0,他引:5  
A grafting copolymer of starch and acrylamide was prepared by 60Co-γ pre-irradiation. After purification, the copolymer was modified by a cationic reaction to form a cationic copolymer. The structure of the cationic copolymer was identified by IR and NMR spectroscopy. Using the industrial and sanitary municipal wastewater from the Factory of Wastewater Treatment of Gaobeidian in Beijing as the study sample, three-treatment methods: flocculation deposition, flocculation deposition combined with γ irradiation and the direct irradiation were carried out. COD was applied to evaluate the treatment effect. The preliminary results show that the method of flocculation deposition combined with γ irradiation was effective than the other two.  相似文献   

10.
This work presents a new multi-residue analytical method based on solid phase extraction (SPE) with Oasis HLB sorbent, followed by gas chromatography tandem mass spectrometry (GC-MS/MS) for the simultaneous determination of a group of 10 acidic and neutral pharmaceuticals and related compounds in wastewaters. The typical derivation step was avoided, allowing the determination of acidic and neutral pollutants in a single analysis as well as providing a fast and easy method suitable for routine monitoring. Target pollutants include: anti-inflammatory drugs (ibuprofen, acetaminophen and diclofenac); an antiepileptic agent (carbamazepine); stimulants (caffeine and nicotine); an antiseptic (triclosan); a plasticizer (bisphenol A) and two of their more relevant metabolites (2,8-dichlorodibenzo-p-dioxin and 1,7-dimethylxanthine). Recoveries between 66 and 112% were achieved for all the target compounds (except for 2,8-dichlorodibenzo-p-dioxin). Good linearity was observed within the studied ranges (R2 > 0.993). Acceptable intra and inter-day precision was obtained, with relative standard deviation between 2 and 18%. The application of the optimized MS/MS mode allowed method detection limits in the range of 0.2-16 ng/L, with the exception of ibuprofen (120 ng/L). Finally, the methodology was successfully applied to the analysis of hospital effluent samples. All target analytes were detected at concentrations between 1 ng/L and 83215 μg/L. Even in the absence of derivatization, all the analytes showed good peak shape, except acetaminophen, which exhibited peak tailing. However, the method proved to be repetitive and reproducible, and the peak shape did not represent a problem for the reliable quantification of this compound. For most of the analytes studied, the detection limits achieved compare well against values reported in previously published methods.  相似文献   

11.
The recycling and recovery of organic matter and nutrients from sewage sludge for application in agricultural soils is gaining interest, while the presence of pharmaceutically active compounds (PhACs) in this matrix may have a great impact on the environment and human health. The aim of this review paper is to outline recent research on the occurrence of PhACs and their metabolites in sewage treatment lines. A total of 32 classes of therapeutic groups including 180 PhACs and 45 metabolites have been included. In a first part, a summary of the analytical methods with a critical overview of the extraction and determination techniques, quality control issues and methodological challenges for their determination is included. Subsequently, the study gives a snapshot of the concentration levels and distribution patterns found in primary, secondary, digested (aerobically and anaerobically), dehydrated and composted sludge. Data have been systematically summarized and categorized according to matrix type, treatment processes available for PhAC degradation in sludge, and geographical areas. Our literature review showed that antimicrobials, antibiotics, non-steroidal anti-inflammatory drugs (NSAIDs), antidepressants and antidiabetics were the most abundant PhACs found in sludge matrices.Overall, attenuation of PhACs concentrations occurs during sludge stabilization, in particular during anaerobic digestion and composting. PhAC sorption onto sludge is strongly affected by the physicochemical properties, the sludge matrix and the operating and environmental conditions. Lastly, the paper discusses the impact of PhACs on sludge-amended agricultural land. The potential ecotoxicological risk associated with the presence of PhACs in amended soil is medium-low for most PhACs. The most critical compounds found in sludge-amended soil are ciprofloxacin, 17α-ethinylestradiol, 17β-estradiol, and triclocarban and triclosan.  相似文献   

12.
A low solvent consumption method for Fourier transform infrared spectroscopy (FT-IR) determination of doxylamine succinate in pharmaceuticals has been developed. The analyte was continuous and selectively extracted with a 13% (v/v) ethanol:chloroform solvent mixture, recirculating the solvent through the sample and monitoring the process by FT-IR. Doxylamine succinate was determined by on-line standard addition measuring the peak area in the regions 1730–1710 and 1485–1462 cm−1 corrected with a two-point baseline established between 2000 and 1800 cm−1. This new method implies low volumes of chloroformic solvent mixture, only 2.6 mL per sample, in front of classical batch FT-IR methods, improving analytical efficiency and reducing waste generation. The on-line extraction and standard addition determination of doxylamine succinate allowed a throughput of 10 h−1.  相似文献   

13.
Yu Y  Wu L 《Journal of chromatography. A》2011,1218(18):2483-2489
As one category of the most urgent emerging pollutants, pharmaceuticals have provoked much public and scientific attention due to widespread contamination in aquatic environment. In this study, two active methods by Oasis HLB and MCX and two passive methods by XAD-16 and XAD-16/7 were evaluated for determining the concentrations of 10 pharmaceuticals (carbamazepine, clofibric acid, diclofenac, gemfibrozil, ibuprofen, ketoprofen, naproxen, paracetomol, terbutaline and triclosan) in reclaimed wastewater. Recoveries of the target pharmaceuticals extracted by MCX were higher than HLB except for diclofenac and ketoprofen. For the passive methods, the addition of polar resin XAD-7 improved the recovery compared with the addition of XAD-16 only. The mean recoveries of the target analytes by XAD-16/7 ranged from 22 to 75.8%. The limit of quantification (LOQ) ranged between 25 and 280 ng/L. In addition, by comparing the accuracy and precision of XAD-16/7 method and MCX method, we further demonstrated that the XAD-16/7 method can be satisfactorily used for the analysis of pharmaceuticals in wastewater samples. We applied the method to some wastewater samples from sewage treatment plant (STP) nearby Riverside, CA to track the concentration change of pharmaceuticals in the treatment processes. The result shown that pharmaceuticals were effective reduced in STP mostly by activated sludge.  相似文献   

14.
This is the first study presenting a multi-residue method allowing for comprehensive analysis of several chiral pharmacologically active compounds (cPACs) including beta-blockers, antidepressants and amphetamines in wastewater and digested sludge at the enantiomeric level. Analysis of both the liquid and solid matrices within wastewater treatment is crucial to being able to carry out mass balance within these systems. The method developed comprises filtration, microwave assisted extraction and solid phase extraction followed by chiral liquid chromatography coupled with tandem mass spectrometry to analyse the enantiomers of 18 compounds within all three matrices. The method was successfully validated for 10 compounds within all three matrices (amphetamine, methamphetamine, MDMA, MDA, venlafaxine, desmethylvenlafaxine, citalopram, metoprolol, propranolol and sotalol), 7 compounds validated for the liquid matrices only (mirtazapine, salbutamol, fluoxetine, desmethylcitalopram, atenolol, ephedrine and pseudoephedrine) and 1 compound (alprenolol) passing the criteria for solid samples only. The method was then applied to wastewater samples; cPACs were found at concentration ranges in liquid matrices of: 1.7 ng L−1 (metoprolol) – 1321 ng L−1 (tramadol) in influent, <LOD (desmethylcitalopram and metoprolol) – 506 ng L−1 in effluent, and in solid matrix digested sludge: 0.4 ng g−1 (metoprolol) – 275 ng g−1 (citalopram). Enantiomeric profiling revealed that studied compounds were present in analysed samples in non-racemic composition. Furthermore, enantiomeric composition of studied analytes differed in liquid and solid matrices. This demonstrates that not analysing the solid fraction of wastewater may lead to over-estimation of the removal rates of cPACs as well as possible misrepresentation of the enantiomeric fraction of the compounds as they leave the wastewater treatment plant. Consequently risks from cPACs entering the environment might be higher than anticipated.  相似文献   

15.
Membrane bioreactor (MBR) technology is advancing rapidly around the world both in research and commercial applications. Despite the increasing number of studies and full-scale applications of MBR systems, directions and trends in academic research as well as commercial developments require further analysis. This paper aims to critically characterize and review worldwide academic research efforts in the area of MBRs as well as focus attention to commercial MBR applications in North America. A total of 339 research papers published in peer-reviewed international journals from 1991 to 2004 and a total of 258 full-scale MBR installations in North America were used as the database for the analysis provided in this paper. After a surge of MBR publications in 2002, research appears to have reached a plateau in the last 3 years using both submerged and external MBR units. Although much of the pioneering research occurred in Japan, France and the UK, countries such as South Korea, China and Germany have significantly contributed to the research pool in the last 5 years. The primary research focus has been on water filtration MBRs with limited growth in extractive and gas diffusion MBRs which still hold un-tapped potential. Fundamental aspects studied in academic research predominantly involve issues related to fouling, microbial characterization and optimizing operational performance. Research in North America presents a unique picture as a higher ratio of industrial wastewater treatment and side-stream MBR applications have been studied compared to other parts of the world. For MBR commercial application, the North America installations constitute about 11% of worldwide installations. Zenon occupies the majority of the MBR market in North America, whereas Kubota and Mitsubishi-Rayon have a larger number of installations in other parts of the world. Due to more stringent regulations and water reuse strategies, it is expected that a significant increase in MBR plant capacity and widening of application areas will occur in the future. Potential application areas include nitrate removal in drinking water treatment, removal of endocrine disrupting compounds from water and wastewater streams, enhancing bio-fuels production via membrane assisted fermentation and gas extraction and purification MBRs.  相似文献   

16.
Membrane bioreactors (MBR) combine biological processes with membrane filtration. Advantages of MBR in municipal wastewater treatment include high effluent quality and reduced space requirements. Steady operation of membrane plants requires careful management of membrane fouling. Even though it might be impossible to prevent, fouling can be limited by techniques such as gas sparging. The injection of gas bubbles increases the shear stress and removes fouling material from the membrane surface. Most cited literature on air sparging refers to short-term experiments, often times in bench scale. The aim of this study was therefore long-term investigations in pilot plant scale of a 70 L reactor fed with glucose-based synthetic wastewater. The main focus was on enhancing permeate flux by air sparging. The results showed that using air sparging significantly increased the permeate flux was doubled even over several weeks. The findings were interpreted using the dimensionless fouling and shear stress number. The fouling resistance was found to decrease significantly with air injection ratios between 0.4 and 0.5. When air sparging was applied after a period without air sparging, the shear stress number doubled. This increase in shear led to a reduction of the fouling number by approximately 30%. During several weeks air sparging only a slow fouling number increase was. In contrast to that after air sparging was ceased, an exponential increase of the fouling number was observed.  相似文献   

17.
The LC-MS/MS analysis of a group of 14 organic pollutants in wastewater – including pharmaceuticals (analgesics/anti-inflammatories, lipid regulators and diuretics), pesticides (diuron) and disinfectants (chlorophene) – has been carried out using a hybrid triple quadrupole-linear ion trap-mass spectrometer (QqLIT). In order to take advantage of the capabilities of the QqLIT system, two methods have been developed and compared, based on the application of different operation modes. One of them uses selected reaction monitoring (SRM), which is the standard mode for quantitative LC-MS/MS analysis. The other is based on the use of an information dependent acquisition scan function (IDA), which allows the combination of a SRM acting as the survey scan and an enhanced product ion scan (EPI) as dependent scan within the same analysis. Performance of both methods was compared, especially in terms of their limits of detection and identification capability. The advantages and limitations of both techniques are discussed. Finally, the two methodologies developed were applied to real samples for evaluation of effluent wastewater in a treatment plant on the south-eastern Mediterranean coast of Spain. The presence of most of the target compounds was detected at mean concentrations ranging from 50 ng/L (mefenamic acid) to 3373 ng/L (hydrochlorothiazide).  相似文献   

18.
The analysis of pharmaceuticals and potential endocrine disruptors in the environment has rightly concentrated on their presence in wastewaters and possible contamination of receiving bodies, such as groundwaters. However, wastewater is increasingly being reused for irrigation and in order to fully understand the environmental fate of these compounds, reliable methods for their analysis in soil are required, of which there are relatively few available. This article reports a method for a range of acidic pharmaceuticals, carbamazepine, and endocrine disrupting compounds in soils with final analysis by gas chromatography-mass spectrometry. Two soil types (Phaeozom and Leptosol) and three fortification levels were used to validate the method. Recoveries of acidic pharmaceuticals varied between 62 and 102%, carbamazepine from 75 to 118%, and potential endocrine disruptors between 54 and 109%; most recoveries were between 75 and 95% and relative standard deviations were generally less than 10%. Detection limits were between 0.25 and 2.5 ng/g except for phthalates and 4-nonylphenols (25 ng/g). The method was used to analyze soils where untreated wastewaters have been used to irrigate crops for approximately 90 years. Concentrations of acidic pharmaceuticals in the soil were <1 ng/g and potential endocrine disruptors varied from below the limit of detection (estrone, 17β-estradiol, and 17α-ethinylestradiol) to 2079 ng/L (bis-diethylhexyl phthalate). This data indicated that despite the continuous application of the contaminants over many years, concentrations were generally lower than those expected to be contributed by a single irrigation event. Only carbamazepine, at concentrations of 6.48 ng/g (in Phaeozem) and 5.14 ng/g (in Leptosol), showed any evidence of persistence in the soils analyzed.  相似文献   

19.
Coke wastewater is an extremely toxic industrial effluent that requires treatment before discharge. A bench-scale, anaerobic–anoxic–oxic membrane bioreactor (A1/A2/O-MBR) system was utilized to treat real coke wastewater with complete sludge retention. In a 160-d test, the A1/A2/O-MBR system stably removed 87.9 ± 1.6% of chemical oxygen demand, 99.4 ± 0.3% of turbidity, and 99.7 ± 3.5% of NH4+-N from coke wastewater. The membrane rejected almost all suspended solids; hence, a low food-to-microorganism environment was created to degrade refractory substances and reduce sludge production rates. The microbial diversity in the MBR system declined over time; however, neither pollutant removal efficiency nor total biological activity was adversely affected. Membrane fouling, which occurred during the operation of the MBR system, was principally resulted from the colloidal fraction of supernatant in suspension. Physical cleaning removed initial deposits of particles; however, prolonged operation resulted in severe clogging that can only be removed by chemical cleaning. An A1/A2/O-MBR system with short intermittent physical cleaning was recommended for coke wastewater treatment.  相似文献   

20.
The present work describes the development of a sensitive analytical method based on pressurized liquid extraction (PLE) and pre-concentration by solid-phase extraction (SPE), followed by liquid chromatography–electrospray tandem mass spectrometry (LC–ESI-MS/MS) for the determination of seventeen pharmaceuticals in soils and sediments. The method is based on sample homogenisation using Na2–EDTA washed sand and extraction with water at 90 °C. Special emphasis was placed on the optimization of the extraction procedure to develop a green method that reduces, at a maximum, the use of organic solvents in order to eliminate matrix components during the clean-up. The proposed method was linear in a concentration range from 0.3 to 333 ng g−1, with correlation coefficients higher than 0.993. Method detection (MDLs) and quantification (MQLs) limits ranged from 0.1 to 6.8 ng g−1 and from 0.25 to 23 ng g−1, respectively. Absolute recoveries were analyte dependent, varying between 50% and 105% at the MQL level, except for fenofibrate (40%) and diclofenac (34%). The intra-day and inter-day precision was given by RSD values from 0.7% to 7.9% and from 1.6% to 14.5%, respectively. Acetaminophen, carbamazepine, ciprofloxacin, clofibric acid, codeine, diazepam, fenofibrate, metropolol, ofloxacin and propanolol were detected at concentrations from MDL to 35.62 ng g−1 in soils and sediments from marsh areas. Due to the low recoveries, results for fenofibrate and diclofenac can only be considered as semi-quantitative. The method was fully suitable for the other 15 pharmaceuticals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号