首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Single Wall Carbon Nanotubes (SWCNT) prepared by the "super growth" method and arc-grown material were used as templates for peapod preparation with La@C(82). A qualitative change of the electron paramagnetic resonance (EPR) properties of La@C(82) is observed after incorporation into SWNT. The loss of lanthanum hyperfine interaction in combination with the observed increase of EPR susceptibility by two orders of magnitude after peapod preparation when comparing with signals from "empty" tubes is indicative for the generation of itinerant spins by charge and spin transfer from La@C(82) to the tubes. This interpretation is supported by the observation of fast spin dephasing, detected with pulsed EPR techniques.  相似文献   

2.
Silica-coated silver nanowires can be chemically treated to produce a "peapod" architecture in which silver peas are embedded in silica pods. The silver "pea" dimension and interparticle spacings are controllable down to approximately 50 nm. This architecture is potentially useful for chemical sensing, plasmonic, or catalytic applications.  相似文献   

3.
A mild phosphorization process in low‐temperature molten salt (NaCl‐KCl‐AlCl3) has been developed to synthesize peapod‐like CoP@C nanostructures by using low‐toxicity industrial PCl3 as the phosphorus source and Mg as the reductant at 250 °C. Importantly, high efficiency of the phosphorous source is achieved since only stoichiometric PCl3 is required to complete the reaction. The molten NaCl‐KCl‐AlCl3 not only provides a liquid environment but also participates in the electron transport by the reversible conversion of the Al3+/Al redox couple. The obtained 0D‐in‐1D peapod CoP@C structure exhibits excellent lithium storage performance, delivering a superiorly stable capacity of 500 mAh g?1 after 800 cycles at a high current of 1.0 A g?1.  相似文献   

4.
Chemical reactions inside single-walled carbon nano test-tubes   总被引:3,自引:0,他引:3  
We report the application of SWNTs as templates for forming covalent polymeric chains from C(60)O reacting inside SWNTs; the resulting peapod polymer topology is different from the bulk polymer in that it is linear and unbranched.  相似文献   

5.
The transient behavior of an electrolytic diode system was studied. A gel-like electrolytic diode was incorporated in a capillary microfluidic chip. The microfluidic platform guaranteed a constant composition of solutions on the diode boundaries. The current responses of the electrolytic diode to step-like changes of the imposed DC electric voltage were measured. Some of these transients were accompanied by a short-time overshoot of electric current density. In order to explain this phenomenon, a mathematical model of the electrolytic diode system was developed. Dynamical analysis of the model equations confirmed the existence of the electric current overshoots. Because the results of the experimental and the numerical transient studies were quite similar, we have explained the physical meaning of three selected overshoots by means of an analysis of the reaction-transport processes inside the electrolytic diode system. The transient experiments carried out in this study indicate that our physical concept of the electrolytic diode system presented in previous papers is correct.  相似文献   

6.
Transition metal oxides are regarded as promising anode materials for lithium‐ion batteries because of their high theoretical capacities compared with commercial graphite. Unfortunately, the implementation of such novel anodes is hampered by their large volume changes during the Li+ insertion and extraction process and their low electric conductivities. Herein, we report a specifically designed anode architecture to overcome such problems, that is, mesoporous peapod‐like Co3O4@carbon nanotube arrays, which are constructed through a controllable nanocasting process. Co3O4 nanoparticles are confined exclusively in the intratubular pores of the nanotube arrays. The pores between the nanotubes are open, and thus render the Co3O4 nanoparticles accessible for effective electrolyte diffusion. Moreover, the carbon nanotubes act as a conductive network. As a result, the peapod‐like Co3O4@carbon nanotube electrode shows a high specific capacity, excellent rate capacity, and very good cycling performance.  相似文献   

7.
Dopant counterion diffusion has made the conjugated polymer pn homojunction a challenging target for decades. We report the electrochemical fabrication of a polyacetylene pn homojunction based on internally compensated forms where the dopant counterions are covalently bound to the polymer backbone. After drying under vacuum, the pn junction exhibits diode behavior with the ratio of the forward to reverse current at 2 V being 7. Despite such modest diode behavior, the fabricated pn junction is significant because it demonstrates the utility of internal compensation in the fabrication of metastable interfaces between dissimilarly doped conjugated polymers.  相似文献   

8.
Raman and in situ Raman spectroelectrochemical studies of Dy3N@C80@SWCNT peapods have been carried out for the first time. The formation of peapods by the encapsulation of gaseous Dy3N@C80 has been confirmed by HR-TEM microscopy and by the successful transformation of Dy3N@C80@SWCNT into double-walled carbon nanotubes. The Raman spectra of the endohedral fullerene cluster changed dramatically in the interior of the single-walled carbon nanotube (SWCNT). The electrochemical charging of the peapod indicates a slight reversible attenuation of the Raman intensities of fullerene features during anodic doping. The results support the assignment of Raman bands to the Dy3N@C80 moiety inside a SWCNT.  相似文献   

9.
Aligned p-type polypyrrole (PPy) nanofibers (NFs) thin film was grown on n-type silicon (100) substrate by an electrochemical technique to fabricate Schottky junction diode for the efficient detection of m-dihydroxybenzene chemical. The highly dense and well aligned PPy NFs with the average diameter (∼150–200 nm) were grown on n-type Si substrate. The formation of aligned PPy NFs was confirmed by elucidating the structural, compositional and the optical properties. The electrochemical behavior of the fabricated Pt/p-aligned PPy NFs/n-silicon Schottky junction diode was evaluated by cyclovoltametry (CV) and current (I)-voltage (V) measurements with the variation of m-dihydroxybenzene concentration in the phosphate buffer solution (PBS). The fabricated Pt/p-aligned PPy NFs/n-silicon Schottky junction diode exhibited the rectifying behavior of I–V curve with the addition of m-dihydroxybenzene chemical, while a weak rectifying I–V behavior was observed without m-dihydroxybenzene chemical. This non-linear I–V behavior suggested the formation of Schottky barrier at the interface of Pt layer and p-aligned PPy NFs/n-silicon thin film layer. By analyzing the I–V characteristics, the fabricated Pt/p-aligned PPy NFs/n-silicon Schottky junction diode displayed reasonably high sensitivity ∼23.67 μAmM−1cm−2, good detection limit of ∼1.51 mM with correlation coefficient (R) of ∼0.9966 and short response time (10 s).  相似文献   

10.
A tunable ionic diode is presented that is based on biomimetic structure-tailorable nanochannels, with precise ion-transport characteristics from ohmic behavior to bidirectional rectification as well as gating properties. The forward/reverse directions of the ionic diode and the degree of rectification can be well-regulated by combining the patterned surface charge and the sophisticated structure. This system creates an ideal platform for precise transportation of ions and molecules, and potential applications in analytical sciences are anticipated.  相似文献   

11.
Raman spectroscopy and in situ Raman spectroelectrochemistry have been applied to the study of the lithium vapor doping of C60@SWCNTs (peapods; SWCNT=single-walled carbon nanotube). A strong degree of doping was proven by the disappearance of the radial breathing mode (RBM) of the SWCNTs and by the attenuation of the tangential (TG) band intensity by two orders of magnitude. The lithium doping causes a downshift of the Ag(2) mode of the intratubular C60 by 27 cm(-1) and changes the resonance condition of the encapsulated fullerene. In contrast to potassium vapor doping, the strong downshift of the TG band was not observed for lithium doping. The peapods treated with lithium vapor remained partially doped even when they were exposed to humid air. This was reflected by a reduction in the intensity of the nanotube and the fullerene modes and by the change in the shape of the RBM band compared with that of the undoped sample. The Ag(2) mode of the intratubular fullerene was not resolved after contact of the lithium-doped sample with water. Lithium insertion into the interior of a peapod and its strong interaction with the intratubular fullerene is suggested to be responsible for the air-insensitive residual doping. This residual doping was confirmed by in situ spectroelectrochemical measurements. The TG band of the lithium-doped peapods did not undergo an upshift during the anodic doping, which points to the formation of a stable exohedral metallofullerene peapod.  相似文献   

12.
A facile in situ method to grow Au nanoparticles (NPs) in hexaniobate nanoscrolls is applied to the formation of plasmonic Au@hexaniobate and bifunctional plasmonic‐magnetic Au‐Fe3O4@hexaniobate nanopeapods (NPPs). Utilizing a solvothermal treatment, rigid multiwalled hexaniobate nanoscrolls and partially filled Fe3O4@hexaniobate NPPs were first fabricated. These nanostructures were then used as templates for the controlled in situ growth of Au NPs. The resulting peapod structures exhibited high filling fractions and long‐range uniformity. Optical measurements showed a progressive red shift in plasmonic behavior between Au NPs, Au NPPs, and Au‐Fe3O4 NPPs; magnetic studies found that the addition of gold in the Fe3O4@hexaniobate NPPs reduced interparticle coupling effects. The development of this approach allows for the routine bulk preparation of noble‐metal‐containing bifunctional nanopeapod materials.  相似文献   

13.
A tunable ionic diode is presented that is based on biomimetic structure‐tailorable nanochannels, with precise ion‐transport characteristics from ohmic behavior to bidirectional rectification as well as gating properties. The forward/reverse directions of the ionic diode and the degree of rectification can be well‐regulated by combining the patterned surface charge and the sophisticated structure. This system creates an ideal platform for precise transportation of ions and molecules, and potential applications in analytical sciences are anticipated.  相似文献   

14.
A new Schottky photodiode of Ag/RuO2/p-Si/Al was successfully fabricated using spin-coating technique. The ruthenium oxide (RuO2) nanoparticles with an average size of 8 nm were synthesized using a sol–gel method. The crystal structure and morphology of the synthesized RuO2 were analyzed by means of X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron microscopy and selective area electron diffraction. The rectification ratio of the diode was found to be 112 at ±2 V. The ideality factor and barrier height values of the Ag/RuO2/p-Si/Al diode were obtained to be 1.47 and 0.55 eV, respectively. The Cheung–Cheung and Norde’s models were used to determine the diode parameters. The photoresponse behavior of the fabricated Ag/RuO2/p-Si/Al diode was studied under various illumination intensities. The transient photocurrent results indicate that photocurrent under illumination is higher than the dark current and this indicates that the fabricated diode behaves as a photodiode. The capacitance–voltage–frequency measurements indicate that the capacitance of the diode depends on voltage and frequency. The obtained results suggest that the new Ag/RuO2/p-Si/Al diode can be used an optical switching device for optical sensor applications and are also expected to be generated in the future study.  相似文献   

15.
The hollow inner spaces of single-wall carbon nanotubes (SWCNTs) can confine various types of molecules. Many remarkable phenomena have been observed inside SWCNTs while encapsulating organic molecules (peapods). However, a mixed electronic structure state of the surrounding SWCNTs has impeded a detailed understanding of the physical/chemical properties of peapods and their device applications. We present a single-chirality purification method for SWCNTs that can encapsulate organic molecules. A single-chiral state of (11,10) SWCNTs with a diameter of 1.44 nm, which is large enough for molecular encapsulation, was obtained after a two-step purification method: metal-semiconductor sorting and cesium-chloride sorting. The encapsulation of C(60) to the (11,10) SWCNTs was also succeeded, promising a route toward single-chirality peapod devices.  相似文献   

16.
Combined temperature-programmed desorption and IR studies suggest that absorption cross sections of IR-active vibrations of molecules "strongly" bound to single-wall carbon nanotubes (SWCNTs) are reduced at least by a factor of 10. Quantum chemical simulations show that IR intensities of endohedrally encapsulated molecules are dramatically reduced, and identify dielectric screening by highly polarizable SWCNT sidewalls as the origin of such "screening". The observed intensity reduction originates from a sizable cancellation of adsorbate dipole moments by mirror charges dynamically induced on the nanotube sidewalls. For exohedrally adsorbed molecules, the dielectric screening is found to be orientation-dependent with a smaller magnitude for adsorption in groove and interstitial sites. The presented results clearly demonstrate and quantify the screening effect of SWCNTs and unequivocally show that IR spectroscopy cannot be applied in a straightforward manner to the study of peapod systems.  相似文献   

17.
In this study, complex substances such as Mint (Mentha haplocalyx Briq.) samples from different growing regions in China were analyzed for phenolic compounds by high‐performance liquid chromatography with diode array detection and for the volatile aroma compounds by gas chromatography with mass spectrometry. Chemometrics methods, e.g. principal component analysis, back‐propagation artificial neural networks, and partial least squares discriminant analysis, were applied to resolve complex chromatographic profiles of Mint samples. A total of 49 aroma components and 23 phenolic compounds were identified in 79 Mint samples. Principal component analysis score plots from gas chromatography with mass spectrometry and high‐performance liquid chromatography with diode array detection data sets showed a clear distinction among Mint from three different regions in China. Classification results showed that satisfactory performance of prediction ability for back‐propagation artificial neural networks and partial least squares discriminant analysis. The major compounds that contributed to the discrimination were chlorogenic acid, unknown 3, kaempherol 7‐O‐rutinoside, salvianolic acid L, hesperidin, diosmetin, unknown 6 and pebrellin in Mint according to regression coefficients of the partial least squares discriminant analysis model. This study indicated that the proposed strategy could provide a simple and rapid technique to distinguish clearly complex profiles from samples such as Mint.  相似文献   

18.
The CuInS(2) (CIS) nanoparticles were wrapped uniformly throughout the inner and outer walls of TNTs (TNT) by using square wave pulsed-electrodeposition. This structure enables the CuInS(2)-TiO(2) (CIS-TNT) to exhibit p-n junction diode behavior and enhanced photoelectrochemical properties.  相似文献   

19.
A comparison of Thomson and Rayleigh scattering, diode laser absorption and line emission measurements is performed on a 100 MHz atmospheric argon-flowing inductively coupled plasma. The parameters, which are measured in two or more ways, are the electron density, the electron temperature and the heavy particle temperature. The optimized diagnostics show the same behavior for the electron density and temperature. Nevertheless, the Thomson scattering diagnostic is the best at retrieving the radial profile. The heavy particle temperature, as measured by using both Rayleigh scattering and diode laser absorption, is identical within the estimated errors. The technique of measuring the temperature during power interruption, with both Thomson scattering and emission spectroscopy, shows that the electron and heavy particle temperatures are not equal during the period of power interruption.  相似文献   

20.
Electrical and optical properties of the ZnO film prepared by sol-gel dip coating were investigated and ZnO film was deposited onto p-type silicon to obtain Ag/ZnO/p-Si heterojunction diode. Two dimensional atomic force microscopy images indicate that the ZnO film is formed from the fibers consisted from nanoparticles with grain size of 250-350 nm. The electrical conductivity mechanism of the ZnO film was varied from extrinsic to intrinsic conductivity. The calculated optical band gap of the ZnO film was found to be 3.22 eV. The Ag/ZnO/p-Si diode exhibit a non-linear behavior with ideality factor of n = 4.17 and barrier height of ?B = 0.79 eV. The electrical properties of the Ag/ZnO/p-Si diode were investigated by current-voltage, capacitance-voltage-frequency and conductance-voltage-frequency measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号